e~
B
Information Society

Technologies

DataGrid

EDG Users’ Guide

Integration Team (WP6)

Document identifier: DataGrid-06-TED-0109-2-2

Date: October 14, 2003
Workpackage: Integration Team (WP6)
Partners: Contributions from all partners

Abstract: This guide explains how to start using the European DataGrid (EDG) testbed, provides basic
example of use, and indicates the location of more detailed documentation.

IST-2000-25182

PUBLIC 1

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

Change Log

’ Version\ Date \ Comment
1.0 15 Jan 2003 Version For EDG 1.4.3
2.0 04 Sep 2003 Draft For EDG 2.0.0
2.1 07 Sep 2003 Changes from Massimo Sgaravatto
2.2 12 Oct 2003 Response to comments from J. Linford, D. Boutigny, J. Linford,
C. Leroy, and G. Moguilny

IST-2000-25182 PUBLIC 2

EDG Users’ Guide

Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

Contents
I_Overview] 7
2 Getting Started|
2.1 Obtaining a Certificate]. o
2.2 Installing User Certificates|.
2.3 Virtual Organizations| L e 10
2.4 “Logging into the Grid”| e 11
B__Grid Information| 13
4__Job Submission| 14
4.1 Job Submission Commands| e 14
4.2 Job Description File|o 14
4.3 Long-lived Jobs| o 16
4.4 Interactive, MPI, and Checkpointed Jobs| 17
4.5 xamples| 17
6__Job Environmentl 22
|6 Data Management| 23
6.1 Terminologyl. e 23
6.2 Replica Location Service| L Lo 24
6.3 Replica Manager| 24
6.4 xamples| L 25
|7 Storage Element| 28
CITURLE - . oo oo e e e e e e e e 28
[7.2 Special TURLS| o 30
8 Metadata Management| 31
[9 Application Monitoring with GRM /PROVE| 32
10 Support 33
MOTWEDSTEA « « « v o o oo e e e e e e e 33
Bugzilla] 33
MO3Contactdl . . . ¢ o o o e 33
A _Glossary 34
IST-2000-25182 PUBLIC 3

EDG Users’ Guide

Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

B _EU DataGrid Software Licensel 36
|C Changing Certificate Formats| 37
IC.1 P12 Format to PEM Formatl 37
IC.2 PEM Format to P12 Formatl 37
(D_Information Schemal 38
DI GLUE . . . o oot e e e e e e 38
ID.2 Service and ServiceStatusl L 40
[E_GridFTPI 42
[ET Tile Transfersl 42
[E2 Client Commandd e 42
IST-2000-25182 PUBLIC 4

EDG Users’ Guide

Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

List of Tables

IST-2000-25182

PUBLIC

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

List of Figures

IST-2000-25182

PUBLIC 6

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

1 Overview

The Grid makes widely distributed computing resources transparently available to the end-user. As well
as purely computational resources, these include data storage and networking. The European DataGrid
(EDG) collaboration builds software components which enable this access; the EDG testbeds are the
vehicles for testing of the EDG software.

There are two testbeds: the development testbed and the application testbed. The application testbed,
is intended for semi-production use by end-users. The development testbed is a key component of the
development, integration, and certification process.

A number of sites (currently around 15 sites in 8 countries) provide the computational resources for the
testbed. Each site provides services which are typically organized as follows:

User Interface (UI) This machine runs the User Interface software which allows the end-user to inter-
act with the EDG testbed. This is typically the machine the end-user logs into to submit jobs to
the grid and to retrieve the output from those jobs.

Computing Element or Service (CE) A computing element consists of one gatekeeper node and one
or more worker nodes. Together these provide computational resources to the user.

Gatekeeper (GK) This is the frontend of a computing element, accepting jobs, dispatching them
for execution, and returning the output. It provides a uniform, grid-accessible interface to the
computational resources it manages.

Worker Node (WN) These nodes sit behind a gatekeeper and are typically managed via a local
batch system. The details of this are hidden from the end-user by the gatekeeper; however,
these are the nodes on which user computations are actually performed. Consequently, the
end-user software is installed on these nodes. These nodes do not run any EDG daemonsﬂ
but do have client APIs for accessing EDG services and information.

Storage Element (SE) These nodes provide uniform, high-level access to data storage. The storage
element may control large disk arrays, mass storage systems and the like; however, the SE interface
hides the differences between these systems allowing uniform user access.

Monitoring Node (MON) The Monitoring Node runs the R-GMA servlets for the site and ROS, the
replica optimization service.

The resources within a testbed site and the total number of sites change over time as new resources are
added to the testbed or are temporarily withdrawn for reasons such as maintenance.

There are also several nodes which provide shared services and are not site-specific but shared by various
subgroups of the testbed users. The most visible are the following:

Resource Broker (RB) These machines accept jobs from users (via the User Interface), match the
jobs’ requirements to the available testbed resources, and dispatch the jobs.

Replica Location Service (RLS) This machine runs LRC, the local replica catalog (one part of RLS),
and RMC, the replica metadata catalog. The RLS maintains a database of a Virtual Organization’s
(see Section data files and associated metadata. These services are used by users and by grid
services to locate appropriate copies of input data files.

1Except for the Mercury daemon for the optional application monitoring package GRM.

IST-2000-25182 PUBLIC 7

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

Information Catalog (IC) The Information Catalog runs the R-GMA schema and registry servlets.
The registry is where the URLSs of all producers and consumers of information within the grid can
be found. Both users and grid services use this extensively in the course of normal operation.

There are numerous other services which support, for example, the EDG security model, but which are
used only indirectly by end-users.

IST-2000-25182 PUBLIC 8

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

2 Getting Started

This chapter provides a very brief summary on use of the EDG Testbed. The rest of the guide and the
referenced documentation contain important details which a prudent reader will browse before starting.
Before using the EDG Testbed resources you must do the following:

1. You must obtain a cryptographic certificate from an EDG-approved Certificate Authority (CA).

(See Section [2.1])

2. With your certificate loaded into a web browser, you must sign the EDG Usage Guidelines and
register with at least one virtual organization. These can be done via the user registration page on
the Testbed websiteﬂ See Section to choose an appropriate Virtual Organization.

3. You must obtain an account on a machine which has the software to access the EDG testbed (a
User Interface machine). If one is not available locally at your home institute, you may request an
account on either the Lyon or RAL User Interface machines. (See Section [2.4])

The following sections provide details of these prerequisites.

2.1 Obtaining a Certificate

Cryptographic certificates are used to attest to the identity of a user or machine to the extent specified in
the issuing Certification Authority’s (CA) policy documents. Users accessing EDG resources must have
a valid certificate; similarly, machines providing grid services within the testbed must also have one.

For users, a certificate is the grid-equivalent of a passport. As such it is personal and should not be
shared with anyone else. You should also ensure that the private key is kept private and that you choose
a secure passphrase.

The EDG-approved CAs have service areas which cover most of Europe and the United States. (Consult
the |current listﬂ on the web.) If a user or site is not covered by an existing CA’s service area, then one
must either start a new CA or negotiate with the French CA to extend its service area’|

Note that the certificate application and delivery procedures for each of the CAs varies. Refer to your
CA’s web site for a description of it’s procedures.

2.2 Installing User Certificates

2.2.1 Installing for use with Globus

The DataGrid relies on the Globus Security Infrastructure (GSI) to implement certificate management.
To use the GSI you must have your certificate in PEM format. Follow the instructions in Appendix [C]
if you need to change a P12-formatted certificate into a PEM-formatted certificate. You should then
place the two files usercert.pem and userkey.pem into a .globus directory in your home area. The file
permissions for the userkey.pen file must be 0600, for usercert.pem 0644 is appropriate.

Thttp://marianne.in2p3.fr/

2http://marianne.in2p3.fr/datagrid/ca/ca-table-ca.html

3Extending the service area is done only if the request involves a small number of certificates and there is someone to
act as a registration authority for those certificates.

IST-2000-25182 PUBLIC 9

http://marianne.in2p3.fr/
http://marianne.in2p3.fr/datagrid/ca/ca-table-ca.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

You may place your certificate and key in a non-standard location, but in this case you must define the
two environmental variables Xx509_USER_CERT and X509_USER_KEY to point to your certificate and key,
respectively before creating a proxy (see Section [2.4)).

2.2.2 TImporting Certificates into a Browser

Signing the EDG Usage Guidelines must be done via a SSL-protected web form. To gain access to this
page you must have your certificate loaded into a web-browser. The procedure for loading a certificate
into a browser varies greatly between browsers. Instructions are given here for several popular browsers.

Netscape (7.1), Mozilla (1.2.1) From the Edit menu select the Preferences... item. In the navigation
panel on the left site of the dialog window, click on Privacy & Security. Under this category click
on the Certificates entry. On the right side of the dialog, there will be a button labeled Manage
Certificates...; click it. This will bring up another window. In the new window, select the Your
Certificates tab and then click on the Import button. Use the file browser to select a P12 copy of
your certificate. You will then be asked to enter (or create) a master password for the “Software
Security Device” and to verify the password on the certificate itself. After entering the passwords,
the certificate should appear in the Your Certificates panel.

Internet Explorer (5.00) Go to the Tools menu and select Internet Options. Choose the Content tab
and click on the Organizations... button in the Certificates section. In the dialog click Import to
start the Import wizard, then follow the instructions. Select the a P12 copy of your certificate for
import and give the password (it should go into the “Personal” certificate store).

You should also select high security otherwise Internet Explorer remembers your pass phrase for
you.

Opera (7.11) From the File menu, select the Preferences... item. In the preferences dialog, choose the
Security item in the navigation panel on the left; click the Manage certificates... button. In the next
dialog, click the Import... button. Use the file dialog to select a copy of your certificate and key in
P12 format. You will be asked for the password protecting the certificate; enter it and then confirm
that you want to import the certificate. You will then be asked to enter (or create) a password for
your “security device.” Enter this and then you should get a dialog confirming that you certificate
has been imported. Unless you have previously imported your CA’s public certificate, Opera will
warn you that it cannot verify the certificate. This is not necessary for using the certificate.

2.3 Virtual Organizations

Virtual Organizations (VOs) are used to organize the testbed users into various subgroups and are the
basis for grid authorization. When a user runs a task, the user’s certificate information is compared with
a file which is populated by information from the various VOs. “John Doe” may have been added to the
Alice VO, in which case the file referred to will have an entry for “John Doe” along with a directive to
map his requests onto a local Alice environment. On the other hand, John would not be allowed to run
jobs under other environments.

The current list of virtual organizationsﬁ can be found on the web. If you did not register with a virtual
organization when you signed the EDG Usage Guidelines (or wish to change your VO membership), then
you must contact the VO manager directly.

If none of the listed virtual organizations is appropriate for you, use the WP6 VO. It is intended as a
catch-all for folks who are not members of any of the others.

With the Testbed 2 software, membership in more than one virtual organization is possible. However the
burden of specifying which virtual organization falls to the user. The local account is still determined by

4http://marianne.in2p3.fr/datagrid /vo/vo-table.html

IST-2000-25182 PUBLIC 10

http://marianne.in2p3.fr/datagrid/vo/vo-table.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

the site’s configuration and mismatches may cause problems when standard unix permissions are used
by services.

2.4 “Logging into the Grid”

To access the resources of the EDG Testbed, you must have a machine available to you which has the User
Interface tools installed. Ask your local site administrator if there is such a machine at your site. If not,
EDG users may obtain an account on a UI machine at the Computer Center in Lyorﬂ (ccedgui.in2p3.1r)
or at RALH (gppui04.gridpp.rl.ac.uk). People with an AFS account at CERN may use testbed010.cern.ch.

Your access rights to the grid services are tied to the subject name of your certificate. In essence, this is
your “grid user name”. Access is controlled via a proxy which is a time-limited credential signed by your
private key. Grid services may take actions on your behalf if they have a copy of this proxy.

Two different methods can be used to generate a user proxy. A standard Globus proxy contains only in-
formation to verify your identify. The VOMS (Virtual Organization Membership Service) proxy contains
additional authorization information about your memberships in virtual organizations and any groups or
roles within those organizations. The VOMS method can only be used if your VO is running a VOMS
server; contact your VO manager to determine if this is the case.

The proxy is a plain file stored by default in the /tmp area of the machine. For sites with a large number
of workstations, it may be more convenient to store the proxy on a shared file system. This will allow you
to generate your proxy once and use it on all of the workstations. To do so, define X509_USER_PROXY in
your shell startup file to point to a file in the shared file system. For example,

export X509_USER_PROXY="/.globus/proxy

for sh-shell variants. You can then use your standard proxy initialization command and it will generate
the proxy in this location.

Once created, the proxy is copied automatically, when necessary, by the various grid commands. Having
a copy of your proxy, a service can act on your behalf. Correspondingly anyone with a copy of your proxy
can act as you while the proxy is valid. The proxy is initially created so that only you can read it; be
careful not to loosen the permissions on the proxy or give anyone else a copy of the proxy.

You can remove the proxy with one of the proxy destruction commands or simply by deleting the proxy
file. Note that this will only affect the local proxy and will not affect jobs running with their own copy
of your proxy.

2.4.1 Globus Proxy

The grid-proxy-* commands allow you to manage a Globus proxy. All of these commands accept the
-help option to give online usage information.

Initialization

If you have installed your certificate correctly, the command grid-proxy-init will create a new proxy
for you. A successful attempt will look similar to the following:

>> grid-proxy-init

Your identity: /C=FR/0=CNRS/0U=LAL/CN=Charles Loomis/Email=loomis@lal.in2p3.fr

Shttp://ccgrid.in2p3.fr/index.php?id=user_interface
6http://atlas.rl.ac.uk/csf/csfuserguide/usrreg.shtml

IST-2000-25182 PUBLIC 11

http://ccgrid.in2p3.fr/index.php?id=userprotect unhbox voidb@x kern .06emvbox {hrule width.3em}interface
http://atlas.rl.ac.uk/csf/csfuserguide/usrreg.shtml

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

Enter GRID pass phrase for this identity: *¥kkxkxkkkkk
Crealting PrOXY vttt ittt Done
Your proxy is valid until Tue Aug 13 03:15:11 2002

By default, the proxy will have a lifetime of 12 hours. Proxies with different lifefimes can be generated
using the -hours option if desired. Note that you expose yourself to a greater chance of having your
credentials hacked if you generate a proxy with a long lifetime.

If the certificate has not been installed correctly, then you will see a “user certificate not found” error.
Check that you have followed the instructions correctly in Section An incorrect passphrase will
result in a “wrong pass phrase” error.

Information

To obtain information about a generated proxy, you can use the command grid-proxy-info:

>> grid-proxy-info

subject : /C=FR/0=CNRS/0U=LAL/CN=Charles Loomis/Email=loomis@lal.in2p3.fr/CN=proxy
issuer : /C=FR/0=CNRS/0U=LAL/CN=Charles Loomis/Email=loomis@lal.in2p3.fr

type ¢ full

strength : 512 bits
timeleft : 11:36:17

Individual parts of this information can be selected using command options.

Destruction
To destroy explicitly the proxy before it has expired, use the command grid-proxy-destroy; the simpliest

form takes no arguments. However this only destroys (erases) the local copy of the proxy. It does not
affect copies of your proxy in use by your jobs or by grid services.

2.4.2 VOMS Proxy

The edg-voms-proxy-* commands allow you to manage a VOMS proxy. All of these commands accept
the -help option to give online usage information.

Initialization
To initialize a VOMS proxy, use the command:

>> edg-voms-proxy-init

Information

To obtain information about your VOMS proxy, use the command:

>> edg-voms-proxy-init -print

Destruction

To destroy your VOMS proxy, use the command:

>> edg-voms-proxy-destroy

IST-2000-25182 PUBLIC 12

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

3 Grid Information

The aim of the Information and Monitoring Service is to deliver a flexible infrastructure that efficiently
provides information about the state of grid services and about applications running on the grid. The
information system forms the backbone of the grid and consequently is used heavily by other grid services
to locate and select suitable resources.

For its information system, EDG uses R-GMA (Relational Grid Monitoring Architecture). R-GMA uses
a relational model and HTTP Servlet technology to implement the Grid Monitoring Architecture from
the Global Grid Forum. Information generated by R-GMA “Producers” are made available to to R-GMA
“Consumers” as relations (tables).

Services communicate with the R-GMA servlets via an API which has been implemented in Java, C,
C++, python and perl. The servlet responds with an XML document that corresponding to an XML
schema definition. Related R-GMA documentation] can be found on the web.

1. Information and Monitoring Services Architecture: This presents the architecture, use cases, and
requirements along with the design and evaluation criteria.

2. R-GMA Users Guide: This explains what you need to know as a user of the Relational Grid
Monitoring Architecture (R-GMA) Information and Monitoring Services.

3. R-GMA Installation Guide: This explains what you need to know as an installer of the various
parts of the R-GMA system. It covers all the components, though most sites will only need some
parts configuring.

4. R-GMA Developers Guide: This explains how to get started as an R-GMA developer. It trys to
cover everything from setting up a computer to do the development to generating a R-GMA release.

As a user, the main interaction with R-GMA will be through the command line or browser interfaces. A
useful, annotated subset of the information system schema can be found in Appendix

A number of information providers have been produced by EDG, including site information, computing
element, storage element and network monitoring scripts. On the various grid resources, a program called
Gin invokes these scripts to obtain the state information of the resource. Gin then parses the output of
the script and publishes this information by using R-GMA.

R-GMA queries use SQL. Queries can be executed with the edg-rgma command line tool available on
user interface machines. Several interesting queries are:

edg-rgma -c "latest select UniqueID,RunningJobs,TotalJobs from GlueCE"
edg-rgma -c "latest select UniquelD,CurrentIOLoad from GlueSE"
edg-rgma -c "latest select URI,Type from Service"

which return information about the computing elements, storage elements, and services on the grid. These
commands use a “latest” producer to process the given SQL query. Using the edg-rgma command with
no arguments invokes an interactive command line interface. Within the interactive R-GMA shell, help
is available.

The information in R-GMA can also be accessed via a browser. The browser interface runs on the
Information Catalog (gppic06.gridpp.rl.ac.uk). Pointing a web browser to the R-GMA browser URIE|
allows one to view the information schema and perform interactive queries.

Lhttp://hepunx.rl.ac.uk/edg/wp3/documentation/
2http://gppic06.gridpp.rl.ac.uk:8080/R-GMA /index.html

IST-2000-25182 PUBLIC 13

http://hepunx.rl.ac.uk/edg/wp3/documentation/
http://gppic06.gridpp.rl.ac.uk:8080/R-GMA/index.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

4 Job Submission

The job submission system functions as a large batch system with commands to submit a job, check its
status, and to retrieve any output. The two main differences between a standard batch system (such as
PBS, LSF etc.) and the EDG job submission service are that the job submission service adds a high-level
layer permitting uniform access to the resources at different sites and matches the available resources to
the requirements for the job automatically.

The summary below is a brief overview of the main features of the job submission system; Figure [4.1
gives a brief pictorial overview. For further information, see the Workload Management Documentation|'|
See Chapter [5| for a description of the job execution environment.

4.1 Job Submission Commands

The relevant commands are

edg-job-submit --vo <V0> <job.jdl>

edg-job-status <jobId>

edg-job-get-output <jobId>

edg-job-cancel <jobId>

for submitting a job, querying its status, retrieving the output, and cancelling a job, respectively.

For input, the submit command takes a job description file (job.jdl) (see below). The submission returns
a job identifier, (jobId), of the form:

https://lxshare0403.cern.ch:9000/20DSom60FP1HOsLGvTQX4Q

which can then be used to determine the status of the job and eventually retrieve its output.

The other commands take job identifiers as input ({jobld)) and perform the corresponding action on the
listed jobs. The edg-job-get-output retrieves the output from the job from the resource broker machine
where it is cached; the output can only be retrieved once a job has reached the “Done” status.

4.2 Job Description File

The key to the job submission and resource matching process is the job description file. This file describes
the necessary inputs, generated outputs, and resource requirements of a job using the Job Description
Language (JDL).

A typical example of a job description file:

Executable = "HelloScript.sh";
Arguments = "hello 200";
StdOutput = "std.out";
StdError = "std.err";

InputSandbox = {"HelloScript.sh"};
OutputSandbox = {"std.out","std.err"};
Requirements = other.GlueCEInfoTotalCPUs > 4;
Rank = other.GlueCEStateFreeCPUs;

Thttp://www.infn.it/workload-grid /documents.html

IST-2000-25182 PUBLIC 14

http://www.infn.it/workload-grid/documents.html

| EDG Users’ Guide Doc. Identifier:
r D DataGrid-06-TED-0109-2-2

W ILEs Date: October 14, 2003

User
Intetface
Replica Location Service
sLbmit job quary for R-GMA {GOUT)
FEfTiavE CLHpoe data fooatior ‘
query for
FEe CLTC 65
Resaource it
Broker Brates
eudmit ol [i
[i
[1
broker ch ,
oﬁim;rmifam ramiaKe Gt \ /
farjoh
Caomputing Storage
Element Element
Site L

Figure 4.1: Job submission and execution. The user interacts with the grid resources via the User
Interface by contacting a Resource Broker. When a user submits a job, the broker collects information
for matchmaking, submits the job to the selected resource, and collects the results on completion. The
broker caches the job output for later retrieval by the user.

shows that a script is passed as input to a job, which then produces standard output and error files which
will be transported back to the user (eventually with a edg-job-get-output).

The input and output sandboxes are intended for relatively small files (on the order of a few megabytes)
like scripts, standard input, and standard output streams. If you are using large input files or generating
large output files, you should instead directly read from or write to a storage element. Abuse of the input
and output sandboxes can fill the storage on the ResourceBroker and make the broker unusable.

The two parameters—Requirements and Rank—control the resource matching for the job. The expression
given for the requirements specifies the constraints necessary for a job to run. In this case, a site with more
than four CPUs is required. The job will only be submitted to resources which satisfy this condition. If
more than one resource matches, then the rank is used to determine which is the most desirable resource
and hence the one to which the job is submitted. (Higher values are more desirable.) In this case, the
resource with the largest number of free CPUs is chosen. Both of these can be arbitrary expressions which
use the fields published by the resources in the information system. The JDL uses the LDAP names of
these attributes (which are slightly different than the SQL names used by R-GMA); see Appendix @] for
a list of useful attributes as well as the .JDL_Attributes documents?]

JDL is based on the Condor ClassAds library. More information about the supported functions and the
syntax of these expressions can be found in the |ClassAds documentatio

ClassAds are extensible and place no restrictions on the parameter names. A side-effect of this is that
misspelled parameter names are still syntatically valid, but will not act as expected. Be extremely careful
spelling the JDL parameter names.

Using parameters in the JDL file one can steer jobs to sites which have a copy of a particular input file:

2http://serverll.infn.it /workload-grid /documents.html
3http://www.cs.wisc.edu/condor/classad/

IST-2000-25182 PUBLIC 15

http://server11.infn.it/workload-grid/documents.html
http://www.cs.wisc.edu/condor/classad/

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

InputData = {"1fn:filel.txt","guid:135b7b23-4a6a-11d7-87e7-9d101£8c8b70"};
DataAccessProtocol = {"file", "gridftp"};

Both the parameters are required to use this feature. Either logical file names (LFN) or file identifiers
(GUID) can be specified; see Chapter |§| for details. The file catalog to use is determined from the
information system and the VO specified on the command line. NOTE: If you specify the wrong VO,
the wrong catalog will be used leading (usually) to a job matching failure. Similarly, one can also select
a site with a particular storage element:

OutputSE = "gppseO05.gridpp.rl.ac.uk";

For more details, see the job submission examples (Section|4.5)), further examples in the Data Management
Section (Section @, and the Workload Management Documentatiodﬂ

It is often useful to check the results of the resource matching without submitting a job. For this, one
can use the edg-job-list-match command. Given the JDL file it will return a ranked list of matching
resources. The highest-ranked resource will appear first.

4.3 Long-lived Jobs

Long jobs may outlive the validity of the initial proxy; if so and the proxy is not renewed, the job
will die prematurely. To avoid this the workload management software allows the proxy to be renewed
automatically if your credentials are managed by a proxy server.

To use the automatic proxy renewal mechanism, first register a proxy with the MyProxy server using the
command

myproxy-init -s <server> -t <hours> -d -n

where “server” is the host name of the MyProxy server and “hours” is the number of hours the proxy
should be valid on the server (default is 7 days). Specifying the -d and -n options are vital to proper
proxy renewal! MyProxy servers can be found in the service table with R-GMA (see Chapter |3)).

As this proxy is only copied to the server, you will need to create a local short-lived proxy using
grid-proxy-init to do the job submissions. The resource broker will retrieve renewed proxies from
the MyProxy server for jobs which need them.

Information about your stored proxy can be obtained via the command
myproxy-info -s <server> -d

and the proxy can be removed with

myproxy-destroy -s <server> -d.

Once the proxy is removed from the server, running jobs will no longer receive renewed credentials.

To allow the broker to find the correct MyProxy server, you must specify it in a job’s JDL file:
MyProxyServer = "myproxy.example.org";
and the MyProxy server must be configured to allow renewals from the broker you use. If this isn’t

specified in the JDL file, the proxy will not be renewed. A default can be specified in the Ul configuration
file, if desired.

4http://www.infn.it /workload-grid/documents.html

IST-2000-25182 PUBLIC 16

http://www.infn.it/workload-grid/documents.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

4.4 Interactive, MPI, and Checkpointed Jobs

With the latest versions of the workload management software, it is now possible to submit interactive,
MPI (Message Passing Interface), and checkpointed jobs. Interactive jobs open real time connections to
the standard input, output, and error streams of the job and allow direct interaction with it. See Exam-
ple [£5 for a typical interactive job example. MPI and checkpointed jobs require specially-instrumented
user executables linked against the MPI or checkpointing libraries, respectively.

Parallelized computations are typically instrumented with the MPI and are designed to run on many
CPUs simulataneously. To submit an MPI job with the EDG software, one must specify two parameters
in the job’s JDL file:

JobType = "MpiCh";
NodeNumber = 4;

The first parameter identifies this job as an MPI executable; the second parameter specifies the number
of nodes needed for the executable to run.

The workload management system implements logical checkpointing for jobs. The checkpointing system
handles the details for saving and retrieving a checkpoint state. However, the job itself is responsible for
the content of the checkpoint state and it must be written to allow restarting from a specified checkpoint
state.

Jobs linked against the checkpointing library periodically save the state of the computation; these jobs
can be restarted from any of the intermediate saved states. To specify a job which uses an executable
instrumented with the checkpointing library, simply specify the type of the job in the JDL file:

JobType = "checkpointable";

The checkpointing framework allows you to retrieve the intermediate state of a job and to specify the
state when submitting a job. For example, the commands

edg-job-get-chkpt --cs 1 -o <state.file> <jobid>
edg-job-submit -chkpt <state.file> <jdl file>

will retrieve the penultimate state of the job and then submit a new job which starts from that state.

4.5 Examples

Example 4.1 (Hello World) The simplest job is one which echos “Hello World” to the standard out-
put. To run this example prepare a file hello. jd1 which contains the following:

Executable = "/bin/echo";

Arguments = "Hello World";
StdOutput = "std.out";

StdError = "std.err";
OutputSandbox = {"std.out","std.err"};

Note that the complete path of the command is given and that the standard output and standard error
are specified in the output sandbox.

Submitting the job returns the generated job identifier:
>> edg-job-submit -nomsg Hello.jdl

https://boszwijn.nikhef.nl:9000/F0qoyQxCejiWbGLeaYc_Ag

IST-2000-25182 PUBLIC 17

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

where the -nomsg option suppresses superfluous information.

Using edg-job-status with the job identifier above yields the following, edited output:
>> edg-job-status https://boszwijn.nikhef.nl:9000/F0qoyQxCejiWsGLeaYc_Ag

Printing status info for the Job : https://boszwijn.nikhef.nl:9000/F0qoyQxCejiW5GLeaYc_Ag

Current Status: Running

Status Reason: Job successfully submitted to Globus
Destination: grid-w2.ifae.es:2119/jobmanager-pbs-workq
reached on: Wed Oct 1 13:00:40 2003

When the status was requested, the job was running. States seen in the normal processing of jobs are:
Accepted, Waiting, Running, and Done. Abnormal execution usually ends with an “Aborted” status.

To retrieve the output (once the job has reached the “Done (Success)” state), use the edg-job-get-
output command with the job identifier as the argument. The following is returned:

>> edg-job-get-output https://boszwijn.nikhef.nl:9000/F0qoyQxCejiW5GLeaYc_Ag

Output sandbox files for the job:

- https://boszwijn.nikhef.nl:9000/FO0qoyQxCejiWbGLeaYc_Ag

have been successfully retrieved and stored in the directory:
/tmp/jobOutput/FOqoyQxCejiWbGLeaYc_Ag

where the output has again been edited. The important information is the location of the output files.
Within the given directory will be the std.out and std.err files specified in the output sandbox. The
std.out file should contain the string “Hello World”. The std.err file is empty in this case but would
contain anything written to the standard error.

The contents of the JDL file are transformed by many different programs during the submission process.
A side effect of this is that special characters in the “Arguments” attribute must be preceeded by triple

4\, e.g.

Executable = "/usr/bin/tail";
Arguments = "-f filel\\\&file2";

and quotes must be escaped with the ‘\’ character, e.g.:

Executable = "/bin/grep";
Arguments = "-i \"my name\" *.txt";

or better, create a script as in the next example.

Directly handling the job identifiers quickly becomes tedious. To avoid this, the edg-job-submit will
append the job identifier to a named file when using the -0 option. Job management commands which
take job identifiers as an argument accept the -i which allows the job identifier to be read from a file.

Note that the job management system does not limit the rate of jobs submitted either by a single user or
in total. Extremely high rates have not been tested with this release, but users are asked to show some
restraint in this regard.

Example 4.2 (Hello from Script) The next example simply sends a small script with the job, exe-
cutes it and returns the results. Create an executable file called HelloScript.sh which contains the
following:

IST-2000-25182 PUBLIC 18

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

#!/bin/sh
/bin/echo "Hello From Script"
/bin/echo "Error From Script" 1>&2

This will echo “Hello From Script” to the standard output and “Error From Script” to the standard
error.

The appropriate JDL file for this job is the following.

Executable = "HelloScript.sh";
StdOutput = "std.out";

StdError = "std.err";
InputSandbox = {"HelloScript.sh"};
OutputSandbox = {"std.out","std.err"};

If the script is not in the current directory, then you must give the full path in the input sandbox line.

After submitting the job as in the previous example and retrieving the output, one finds that the std.out
and std.err files contain the strings “Hello From Script” and “Error From Script”, respectively.

The executable named in the JDL will automatically be set with executable permissions. Other executable
files shipped in the input sandbox may need to have the permissions set explicitly.

Important note: The input and output sandboxes are intended for relatively small files (few megabytes)
like scripts, standard input, and standard output streams. If you are using large input files or generating
large output files, you should instead directly read from or write to a storage element. Abuse of the input
and output sandboxes can fill the storage on the ResourceBroker and make the broker unusable.

Example 4.3 (Specifying Job Requirements) By specifying job requirements, the user can steer
the job to sites which have the resources necessary to run the job correctly. Incompletely specifying the
requirements may cause the job to be scheduled on a resource which cannot handle the job. This will
cause the job to fail, wasting computing resources and the user’s time.

The requirements are specified with a “Requirements” attribute in the JDL description of the job. This
value of this attribute is a boolean expression which specifies the necessary constraints. Nearly the full
set of C operators and syntax are supported.

The values (or variables) which can be used in the requirements expression can be found by looking at
the GlueCE attributes in the information system (see Appendix @ To see the values of attributes for
all CEs, try the following command:

> edg-rgma -c "latest select * from GlueCE"

NOTE: the names vary between the LDAP and SQL versions of the information schema. The ones
specified in JDL expressions must be LDAP names (see Appendix @

To express that a job requires at least 25 minutes of CPU time and 100 minutes of real time, the
expression:

Requirements = other.GlueCEPolicyMaxCPUTime>=1500 &&
other.GlueCEPolicyMaxWallClockTime>=6000;

would limit the matching to viable sites. The times are given in seconds. Note that the attribute names
are prefixed with “other.”; this is a remnant of the ClassAds syntax on which JDL is based. Note also
that the values are not quoted. Using quotes around a numeric value will result in a string comparision
which will produce an erroneous match (or none at all).

The “GlueHostApplicationSoftwareRunTimeEnvironment” is usually used to describe application soft-
ware packages which are installed on a site. For example,

IST-2000-25182 PUBLIC 19

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

Requirements = Member ("ALICE-3.07.01",
other.GlueHostApplicationSoftwareRunTimeEnvironment) ;

will choose a site with the “ALICE-3.07.01” tag defined. The run time environment is a multi-valued
attribute and evaluates to a list. The “Member” function returns true if the given value is in the list.
(NOTE: The order of these parameters have changed from earlier releases.)

Occasionally, one may wish to exclude or include a site manually. Forcing a job to a site can be accom-
plished with the -resource option of the edg-job-submit command. However, this entirely bypasses the
matchmaking process and will not produce a .BrokerInfo file (see the Workload Management Docu-
mentatiorﬂ for information on the BrokerInfo file) with the matchmaking results. Instead one can use
the matchmaking with a clause likeEI

Requirements = other.GlueCEUniquelD ==
"adc0006.cern.ch:2119/jobmanager-pbs-short";

to do the same thing. More interestingly one can select or exclude a site:

Requirements = RegExp(".*cern.*",other.GlueCEUniqueID);
Requirements = (! (RegExp(".*cern.*",other.GlueCEUniqueID)));

which cannot be accomplished with the -resource option. Note that the JDL is very picky about the
logical “not” syntax. Many sites also define a run time environment variable which identifies the site.

In the UI configuration file (/opt/edg/etc/edg wl ui_cmd var.conf) there is a requirements clause
which is added to all JDL files by default. By default this is

Requirements = other.GlueCEStateStatus == "Production";

which chooses sites marked as production. Users may create a Ul configuration file of their own to specify
habitual requirements (or to choose an alternate resource broker, etc.). To use a custom Ul configuration
file set the EDG_WL_UI_CONFIG_PATH variable to the full path name, or specify the -c¢ option when
submitting a job with the edg-job-submit command. This configuration also contains a default Virtual
Organization to use if one is not specified on the command line.

Example 4.4 (Ranking Resources) If more than one resource matches the specified requirements,
then the highest-ranked resource will be used. If the “Rank” attribute is not specified in the user’s JDL
description, then

rank = - other.GlueCEStateEstimatedResponseTime;

will be used by default (also specified in the UI configuration file). The estimated response time is the
expected time in seconds that a job will take to begin executing at the site.

This ranking is not always ideal, and the user may wish to choose some other criteria for the ranking.
The rule to remember is that the larger the rank, the more desirable the resource is. If there are multiple
resources with the same, highest rank, the broker will choose randomly between those resources. For
example,

Rank = other.GlueCEStateFreeCPUs;

will choose the site with the largest number of free CPUs. If there are no suitable sites with free CPUs,
the broker will choose randomly. An expression like:

Shttp://www.infn.it /workload-grid /documents.html
6A “CE” in this context is a batch queue. A “CEId” is a concatenation of the host, port, type of batch system, and
queue name.

IST-2000-25182 PUBLIC 20

http://www.infn.it/workload-grid/documents.html
http://www.infn.it/workload-grid/documents.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

Rank = 1;
will ensure a random selection between all suitable resources.

Example 4.5 (Interactive Jobs) Save the following JDL to a file called “Interactive.jdl”,

JobType = "Interactive";
Executable = "ScriptInt.sh";
StdOutput = "std.out";
StdError = "std.err";

InputSandbox = {"ScriptInt.sh"};
OutputSandbox = {"std.out","std.err"};
ListenerPort = 50101;

Requirements = other.GlueCEStateFreeCPUs > O0;
Rank = other.GlueCEStateFreeCPUs;

and the following to a script called “ScriptInt.sh”

#!/bin/sh

echo "Welcome!"

sleep 1;

echo "What is your name?"
read A

echo "Bye Bye $A"

exit O

When the job starts, an X-window will be opened allowing you to see the standard output and error
streams; moreover, you’ll be able to provide the standard input.

Note that you must connect to the User Interface machine in such a way that X-Window input is possible.
Usually this means using ssh with the -X option.

Also the RB must be able to make an incoming connection to a TCP port on the UL If your UI is behind
a firewall, then specify the listener port in the JDL with the following:

ListenerPort = 50100;

where you choose a free port which is accessible from outside the firewall. The environmental variable
GLOBUS_TCP_PORT_RANGE, if set, contains a range of ports accessible from the exterior.

IST-2000-25182 PUBLIC 21

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

5 Job Environment

Currently the environment seen by jobs on grid resources contains very little “grid” customization. The
standard PATH and LD_LIBRARY _PATH variables will be set allowing access to typical grid client commands.
In addition, the variables EDG_LOCATION and GLOBUS_LOCATION will be set to the top of the EDG and
Globus software trees[T]

Notably there will be no environment specific to your virtual organization setup automatically. To
bootstrap the environment setup, your job should first execute the command:

eval ‘\$EDG_LOCATION/bin/edg-vo-env --shell=sh atlas®

where “atlas” is replaced by the name of your virtual organization and “sh” is either “sh” or “csh” for
sh-like or csh-like shells, respectively. The command uses “sh” if the shell is not specified explicitly.
After execution the variable ATLAS_ROOT_DIR will be defined. Your virtual organization may also require
additional setup in which case you will be required to source a script under the ATLAS_ROOT_DIR area.

Information about the matchmaking process is provided in the .BrokerInfo file which is accessible from
the environment variable EDG_WL_RB_BROKERINFO. A precise example on using this file can be found in
Chapter [6]

1The environment described here is only initialized for login shells. A login shell is started automatically when submitting
jobs via EDG commands but not for the raw Globus commands. If you use the raw Globus commands, you must specify a
login shell to get this environment.

IST-2000-25182 PUBLIC 22

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

6 Data Management

A large part of user tasks on the grid consist of access to data and management of the files containing data.
Most users will use the Replica Manager command line interface and API to perform data management
tasks on the grid. The Replica Manager interacts with the Replica Location Service (RLS), the Replica
Metadata Catalog (RMC), the Replica Optimization Service (ROS) and the Storage Elements (SE) to
provide high-level functionality and concurrently to shield users from tedious details of direct RLS and
SE interaction. Nonetheless some details concerning the RLS and SE help users understand how the
Replica Manager performs its job.

6.1 Terminology

Jargon unfortunately permeates the descriptions of the data management middleware. The following
definitions will help to understand the typical terminology:

GUID Grid Unique Identifier. This is a unique, immutable label for a file registered in the RLS. All
replicas of this file share the same GUID. GUIDs take the form:

guid:135b7b23-4a6a-11d7-87e7-9d101£8c8b70
LFN Logical File Name. This is a user-specified, unique label for a file—usually a more intuitive tag
which gives some indication of the file’s content. In contrast to a GUID, a LEFN is mutable. LFNs
take the form:
lfn:HiggsMonteCarlo.dat.
SURL Storage URL. A URL which uniquely identifies a file contained in a Storage Element. SURLs
typically take the form:
srm://grid02.1lal.in2p3.fr/iteam/higgsCandidate.dat
TURL Transport URL. A temporary URL which can used used to access a particular data file contained
in a Storage Element via a certain protocol. For example, a TURL for access to a file via rfio takes
the form:
rfio://grid02.1al.in2p3.fr/iteam/higgsCandidate.dat

Much of the terminology has changed from the previous release and has been replaced by the above,
more precise terms.

IST-2000-25182 PUBLIC 23

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

6.2 Replica Location Service

The Replica Location Service (RLS) consists of two services: the Local Replica Catalog (LRC) and the
Replica Location Index (RLI). The RLI allows the RLS to be geographically distributed; however, for
EDG 2.0, this is not deployed. Therefore, a single LRC instance per Virtual Organization acts as a global
registry for that VO’s files. (Technically, the LRC contains the GUID—SURL mapping as well as some
metadata concerning the physical file. See below for an explanation of the terminology.)

A service closely related to the RLS is the Replica Metadata Catalog (RMC). The RMC contains
metadata about a VO’s files. (Technically, the LEN—GUID mapping and metadata tied to the GUID.)

The Replica Optimization Service (ROS) allows the Replica Manager to choose the “closest” file in terms
of total transfer time.

Finally, the Storage Element (SE) provides a uniform interface to data storage. It provides a web service
interface for management functions and typically allows for several types of direct access to data stored
on the SE. The GridFTP protocol is supported by all SEs and can be used for wide-area access to the
data. Typically “file” (i.e. standard POSIX access) and “rfio” access to the data are also provided to a
“close” Storage Element. A SE and CE are in fact defined to be “close” if file access to the SE’s data is
possible from the CE.

6.3 Replica Manager

The Replica Manager allows one to copy files into grid storage, register files, replicate files between
SEs, delete individual replicas, delete all replicas of a particular file, among other things. All of these
are available via the edg-replica-manager command or its abbreviated version edg-rm. Two general
options to this command that are absolutely vital to correct operation are the --vo and ——insecunﬂ options.
The --vo option takes the name of your VO as an argument.

A good first test is to execute the following on an User Interface machine:
edg-replica-manager --vo iteam —--insecure printInfo

substituting “iteam” for the name of your VO. This prints a lot of information about exactly what
services the replica manager command will use; the information is pulled from R-GMA. If there are
problems with the Replica Manager commands, this command is often useful for debugging.

The subcommands for the Replica Manager also have shortened forms; for example the “printInfo” in
the above command could have been replaced with “pi”. A full list of the abbreviations is available from
the command’s usage obtained with the --help option. The examples in this chapter will use the long
forms for clarity.

Frequently used subcommands are:

e copyAndRegisterFile: useful for bringing a file on to the grid

listReplicas: list all of the replicas of a given file

deleteFile: delete a replica and remove from catalog

replicateFile: create a new replica of a file which already exists on the grid on a particular SE

list GUID: list the GUID of a LFN or SURL

e getBestFile: return the SURL of the “closest” replica of a file making a local replica if possible

The use of all of these commands will be seen in the following examples.

1The current testbed deployment does not use the security features of RLS. If this option is not specified, then the
replica manager will attempt to use the secure port and the command will fail.

IST-2000-25182 PUBLIC 24

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

6.4 Examples
The examples show typical data management cases and highlight the commands described above.

Example 6.1 (Bringing a File onto the Grid) Often data files are first created in temporary scratch
space or on computers outside of the grid. To make these data grid-accessible, they must be moved to
a Storage Element; usually one wants to register these files in a VO’s catalog as well. This example
demonstrates how to do this.

First create a fresh proxy with grid-proxy-init. Although the registration is not currently secured, the
file transfer is; therefore, valid credentials will be needed.

Create an empty local file to work with:
touch empty-local-file

and now perform a copy AndRegisterFile with the Replica Manager to copy this to a Storage Element
and register the file.

>> edg-replica-manager --vo iteam --insecure \
copyAndRegisterFile file: ‘pwd‘/empty-local-file \
--destination-file gppseO5.gridpp.rl.ac.uk \
--logical-file-name lfn:my-demo-2003-10-01-1600

guid:b793f080-£417-11d7-b584-857330072702

The GUID of the created file is returned on successful completion. If the --destination-file option is not
given, then the copy is made on the “local” SE. You can use the printInfo subcommand to see what the
“local” SE is. If the --logical-file-name is not given, then the only way to access this file is through the
returned GUID.

To check that this file exists, use the listReplicas command:

>> edg-replica-manager --vo iteam --insecure \
listReplicas guid:b793f080-f417-11d7-b584-857330072702

srm://gppse05.gridpp.rl.ac.uk/iteam/generated/2003/10/01/£fileb16684bf. . .

Either the logical file name or GUID can be used. One sees that both commands return the same SURL
(truncated here) for the replica and that this replica is indeed on the specified SE.

To delete this file, one can use the subcommand deleteFile, specifying the SURL to be deleted.

>> edg-replica-manager --vo iteam --insecure \
deleteFile \
srm://gppse05.gridpp.rl.ac.uk/iteam/generated/2003/10/01/£fileb16684Dbf. . .

Note that deleting the last replica of a file will also remove the GUID and LFN from the catalog. If you
wish to remove all replicas, you can use the --all option with specifying a GUID.

Example 6.2 (Replicating Existing File) As the brokering system does not yet perform automatic
replication of data files for jobs, it is often necessary to make several replicas of a file on different Storage
Elements. To demonstrate this, repeat the previous example to bring a file “Ifn:my-second-demo-2003-
10-01-1600" onto the grid but fill the file with the string “Hello There”. To verify this exists:

IST-2000-25182 PUBLIC 25

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

>> edg-replica-manager --vo iteam --insecure \
1istGUID lfn:my-second-demo-2003-10-01-1600

guid:a3ac7647-f418-11d7-a57b-e4d5c9608efc
which lists the GUID associated with this file. One could have also used listReplicas again

>> edg-replica-manager --vo iteam --insecure \
listReplicas lfn:my-second-demo-2003-10-01-1600

srm://gppse05.gridpp.rl.ac.uk/iteam/generated/2003/10/01/file9de8efeb. . .

which shows that the file is on the gppse05.gridpp.rl.ac.uk SE.

You can use the edg-rgma to find another SE. Now to replicate this to another storage element:

>> edg-replica-manager --vo iteam --insecure \
replicateFile --destination se001.fzk.de \
1fn:my-second-demo-2003-10-01-1600

srm://se001.fzk.de/iteam/generated/2003/10/01/file42a1d2b2. ..
which returns the SURL of the copy. Using listReplicas again shows the two distinct replicas:

>> edg-replica-manager --vo iteam --insecure \
listReplicas lfn:my-second-demo-2003-10-01-1600

srm://gppse05.gridpp.rl.ac.uk/iteam/generated/2003/10/01/file9de8efeb. . .
srm://se001.fzk.de/iteam/generated/2003/10/01/file42a1d2b2. ..

Leave these files on the grid for the next example.

Example 6.3 (Accessing a File from a Job) The previous example showed how to bring data onto
the grid and move it around. This one now demonstrates how to read the data from a job using the “file”
protocol. It uses getBestFile to get the SURL of the local copy (making a copy if necessary) and then
transforms that SURL into a filename which can be opened. The script calculates the checksum of the
file.

Put the following JDL into a file called “ReadData.jd]”:

Executable = "script.sh";

InputData = {"1fn:my-second-demo-2003-10-01-1600"};
DataAccessProtocol = {"file","gridftp","rfio"};

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {"script.sh"};

OutputSandbox = {"std.out","std.err"};

and put the following into a file script.sh:
#!/bin/sh
Get SURL of local replica (making one if necessary).

surl=‘edg-replica-manager --vo iteam --insecure \
getBestFile 1lfn:my-second-demo-2003-10-01-1600°

IST-2000-25182 PUBLIC 26

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

echo SURL: $surl

Get TURL of the local replica.

turl=‘edg-replica-manager --vo iteam --insecure \
getTurl $surl file®

echo TURL: $turl

Strip off URL’s scheme and fix multiple slashes.
fname=‘echo $turl | sed -r ’sh/+%/%g’ | sed s¥hfile:%%"
echo FILE: $fname

Get the check sum of this file.
cksum $fname

Checking the matching with an edg-job-list-match should return Computing Elements at the two sites
which have replicas of this file. Actually sending the job should return the correct checksum of the file
in the std.out file.

More information on the Replica Manager and the underlying services discussed in this chapter can be
found in the Users’ Guides for the Replica Managei} LRCP] RMY and RO

2http:/ /cern.ch/edg-wp2/replication/docu/edg-replica-manager-userguide.pdf
3http://cern.ch/edg-wp2/replication /docu/edg-lrc-userguide.pdf
4http://cern.ch/edg-wp2/replication/docu/edg-rmec-userguide.pdf
Shttp://cern.ch/edg-wp2/replication/docu/edg-ros-userguide.pdf

IST-2000-25182 PUBLIC 27

http://cern.ch/edg-wp2/replication/docu/edg-replica-manager-userguide.pdf
http://cern.ch/edg-wp2/replication/docu/edg-lrc-userguide.pdf
http://cern.ch/edg-wp2/replication/docu/edg-rmc-userguide.pdf
http://cern.ch/edg-wp2/replication/docu/edg-ros-userguide.pdf

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

7 Storage Element

The Storage Element (SE) acts as a Grid interface to mass storage systems (MSS), or to disk. The SE
can be used to make existing files in an MSS available to the Grid, or to write files from the Grid and
store these in MSS. The SE itself does not store the files, it only keeps cached copies of the files on its
own disk (except for disk only SEs of course), plus some metadata for the files such as access control lists
etc.

So when you need to access a file from the Grid, you ask the SE to make a copy of the file available on
its disk cache. Conversely, when writing a file into the SE, you need to ask the SE for a location in the
disk cache to which you can upload the file. In either case you also need to tell the SE when you have
finished with the file so the SE can reclaim the space in its disk cache. This step is necessary because a
client may make several independent accesses to any given file.

Normally Grid clients don’t access an SE directly, but leave it to the Replica management system (see
Chapter @ to manage the files for them. Nevertheless there are cases where a client will wish to access an
SE directly, for example when writing output from a job to a specific SE shared for a cluster, or creating
temporary files, or other files that need not be replicated.

7.1 TURLs

7.1.1 What is a TURL?

A TURL is a Transfer URL. In the Storage Resource Manager (SRM) model, you tell the SE/SRM that
you wish to access an existing file and the SRM provides a URL where you can fetch it. You must then
tell the SRM when you have finished accessing the file, so the disk cache space can be reclaimed.

Creating a file is entirely analogous: first you tell the SE/SRM that you wish to create a file with a
given size and a given name, and then the SE/SRM sends you a TURL to which you can upload the file.
Finally you must tell the SE/SRM that you have finished uploading the file.

7.1.2 An example using the SE command line interface

In this example we create and upload a file to the SE using the WP2 command line interface to the SE
web service.

>> edg-se-webservice \

-i create gppseOl.gridpp.rl.ac.uk/nikuufop \
--endpoint http://gppse0l.gridpp.rl.ac.uk:8080/edg-se-webservice/services/edg-se-webservice

gsiftp://gppseOl.gridpp.rl.ac.uk//flatfiles/01/data/d0/d0738b9c936£8790a3cd58ea60625642

This returns a request id marked as “<request id>" below. (For SEs prior to the 2.1 release, also happens
to be a gsiftp turl.) Then we use the get TURL subcommand, specifying the desired protocol:

>> edg-se-webservice -i getTURL \
--endpoint <...> \

<request id>

gsiftp://gppseOl.gridpp.rl.ac.uk//flatfiles/01/data/d0/d0738b9c936£8790a3cd58ea60625642

IST-2000-25182 PUBLIC 28

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

This returns the turl for the protocol (“<TURL>" below). Then we upload the file to the turl:
>> globus-url-copy file://‘pwd‘/testfile <TURL>

Finally we call commit to tell the SE that we have finished uploading the file, passing again the request
id to the SE.

>> edg-se-webservice -i commit \
--endpoint <...> \
<request id>

The SE interface to the SE (as opposed to the SRM interface to the SE) can be confusing because prior
to release TB2.1 it will return a gsiftp TURL as a request id. This is confusing because people then
forget to call get TURL subcommand (which is OK if you only wanted a gsiftp turl anyway, because in
that case get TURL does nothing).

7.1.3 Simplified SRM Example

We give an example of using the SRM version 1 API to download the file we just uploaded above. The
example is simplified in the following ways: we consider only requests on a single file and we simplify the
response by only considering the most essential parts of the response.

The example is to fetch and download a file from the SRM using the SRM v1 API.
The client calls

get("srm://gppse0l.gridpp.rl.ac.uk/nikuufop", "gsiftp")
This command returns a structure which contains

Request ID e.g. 16726, for SRM vl request ids are always integers

File Index An index for the file in the request. This is so each file in the request can be addressed
individually. Say, 0 in this case.

State Typically “Pending”, “Ready”, or “Failed” at this stage.
TURL A transfer URL which is valid only when the state is Ready.

If the state above is not “Ready”, the client poll for a “Ready” status with
getRequestStatus (16726)

The number 16726 is the request id returned by the get method. This command returns the same
structures as the get command, but perhaps with an updated “state” entry.

Once the state becomes “Ready”, the TURL entry is valid:
gsiftp://gppseOl.gridpp.rl.ac.uk//flatfiles/01/data/d0/d0738b9c9361£8790a3cd58ea60625642

Then you fetch the file using, e.g., globus-url-copy. Finally, when you’re done you must inform the
SRM that you have finished with the file.

setFileStatus(16726, 0, "Done")

The 0 here is the index of the file in the request, as returned by the intial get method and by getRe-
questStatus.

IST-2000-25182 PUBLIC 29

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

7.2 Special TURLSs

The TURL is always a URL. This is because the TURL is parsed by replica manager software and this
software expects well-formed URLs.

However, sometimes files are not accessed using URLs, and the two canonical examples of this are RFIO
and POSIX access (e.g. an NFS mounted SE).

7.2.1 RFIO

For RFIO, the returned TURL may look like this:
rfio://adc0027.cern.ch///flatfiles/SE02/data/5a/5a155b26b642157b7cef1£407206£825
However, the RFIO API expects an RFIO name of the form
adc0027.cern.ch:/flatfiles/SE02/data/5a/5a155b26b642157b7cef1£407206£825

This means that the client has to strip away the “rfio://” part, and insert a colon at the end of the
hostname. The extra slashes don’t matter.

NOTE: The RFIO port number used for to access CASTOR at CERN is 5001, but the TANA defined
standard is 3147. The SEs at CERN generally use 3147. You may need to set the RFIO_PORT environment
variable to the value 3147 before using RFIO clients to access the SE.

7.2.2 POSIX

If you request a file TURL with getTURL, it will return something like the following:
file:////flatfiles/SE02/data/5a/5a155b26b642157b7cef1f407206£825

In this case the hostname is already stripped out by the SE. Java can open a TURL of this format. The

standard C library POSIX cannot cope with it, and it is necessary for the client to strip away the initial
“file://7:

FILE x*
turl_open(char const *turl, char const *access)
{
char const proto[] = "file://";
if(strncmp(proto, turl, strlen(proto))) {
errno = EFAULT;
return (FILE *)NULL;
}
turl += strlen(proto);
return fopen(turl, access);
}

This example assumes that the SE is mounted on a directory that makes the file path identical on the
SE and on the client—which is generally the case. Otherwise the client will have to translate the path as
well (or the SE will have to be configured to do this, but this will only work if the translation is the same
for all clients).

IST-2000-25182 PUBLIC 30

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

8 Metadata Management

Some EDG services must maintain persistent metadata in remote relational databases. However, existing
relational database systems are not grid-enabled, affecting adversely cross-organizational interoperability
and reuse. Spitﬁreﬂ addresses these issues. Spitfire is designed to be used for metadata storage and
retrieval.

The Spitfire middleware is inserted into the control and data path between the client and the RDBMS
and so grid-enables the RDBMS. It introduces a uniform interface, data model, network protocol and
security model. These are based on widely accepted standards and neutral with respect to programming
language, platform and database product.

There are three main components to the Spitfire service: the primary server component and the client
library component(s). Applications that have been linked to the Spitfire client library communicate to
a remote instance of the server. This server is put in front of a RDBMS (e.g. MySQL or Oracle), and
securely mediates all Grid access to that database. The browser is a standalone web portal that can also
be placed in front of a RDBMS.

The server is a fully compliant Web Service implemented in Java. It runs on Apache Axis inside a Java
servlet engine (currently Apache Tomcat). The service securely mediates access to the RDBMS. The
service is reasonably non-intrusive, and can be installed in front of a pre-existing RDBMS. The local
database administrator retains full control of the database back-end, with only limited administration
rights being exposed to properly authorized grid users.

The web services client library, at its most basic, consists of a WSDL service description that describes
fully the API. This API allows SQL operations to be performed from the client application upon the
remote Spitfire service, with full Grid security. Using this standard WSDL description, client stubs can
be generated automatically in the programming language of choice. We provide pre-built client libraries
for the Java, C, and C++ programming languages.

In addition to accessing the service with the clients, the user can access the database using a web browser,
too. The server package contains a web interface for querying and manipulating the database, as well as
an administrative interface for defining access rules for users and groups.

More information can be found on the Spitfire websitd?]

Lhttp://edg-wp2.web.cern.ch/edg-wp2/spitfire/index.html
2http://edg-wp2.web.cern.ch/edg-wp2/spitfire/documentation.html

IST-2000-25182 PUBLIC 31

http://edg-wp2.web.cern.ch/edg-wp2/spitfire/index.html
http://edg-wp2.web.cern.ch/edg-wp2/spitfire/documentation.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

9 Application Monitoring with GRM/PROVE

GRM and PROVE are application monitoring and visualization tools for analysing the performance of
message-passing parallel applications in the grid. The instrumentation library of GRM provides a flexible
trace event specification.

What you need to do is
e to instrument your parallel application with GRM calls
e to submit your job
e to start PROVE and (from PROVE) GRM giving the job ID as parameter
e to watch PROVE drawing the behaviour of your program in a graphical time-line display.

For more information on how to use GRM see GRM-Grid Application Monitor Users Manuaﬂ

The components of GRM are connected to R-GMA (see chapter [3)) to find the application in the grid.
Besides R-GMA, GRM uses the Mercury monitor to transfer large amount of trace data through the
network to the PROVE visualisation tool. Mercury monitor is an external package and it is installed
only for this purpose.

Thttp://hepunx.rl.ac.uk/edg/wp3/documentation/grm/guide/index.html

IST-2000-25182 PUBLIC 32

http://hepunx.rl.ac.uk/edg/wp3/documentation/grm/guide/index.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

10 Support

10.1 Website

The main Testbed Websiteﬂ contains documentation, contact information, the bug-reporting system,
links to the source and packages repositories as well as links to other sites. This serves as the single
point-of-access to information about the testbed activities.

10.2 Bugzilla

The bug-tracking system, Bugzillaﬂ is intended to facilitate the reporting and fixing of bugs in the
European DataGrid software. This includes the DataGrid’s distribution of the Globus2 system; confirmed
bugs in Globus will be forwarded to the Globus team.

This system is not intended to track bugs in application software, that is, user and experimental software
running on the grid. For these types of problems, please refer to the list of application support contacts
found on the lcontacts pageﬂ

The Bugzilla database is publicly available and can be searched by anyone. However reporting bugs
requires a valid Bugzilla account. Creating an account requires only a valid e-mail address. You will be
prompted to open an account when you report your first bug. Note that Bugzilla uses cookies to keep
track of your account data, so your browser must have cookie support enabled.

Concise bug reports speed the resolution of the problem. Stripped-down test cases and detailed explana-
tions are greatly appreciated. Please do search the existing bugs to see if your problem has already been
reported.

10.3 Contacts

The user’s first point of contact for operational problems is the local site administrator. A list of email
addresses for the site administrators can be obtained with the following command:

edg-rgma -c "latest select siteName,userSupportContact from SiteInfo"
For application-specific problems the appropriate application representative should be contacted. Users

are welcome and encouraged to use the bug-reporting facility. The user support grouyﬁ can be contacted
for help. As a last resort, users may contact the [Integration Tea

Thttp://marianne.in2p3.fr/
2http://marianne.in2p3.fr/datagrid /bugzilla/
3http://marianne.in2p3.fr/datagrid /mailing-lists.html
4http://marianne.in2p3.fr/datagrid /support/
5mailto:hep-proj-grid-integration-team@cern.ch

IST-2000-25182 PUBLIC 33

http://marianne.in2p3.fr/
http://marianne.in2p3.fr/datagrid/bugzilla/
http://marianne.in2p3.fr/datagrid/mailing-lists.html
http://marianne.in2p3.fr/datagrid/support/
mailto:hep-proj-grid-integration-team@cern.ch

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

A Glossary

AFS Andrew File System (http://www.openafs.org/frameless/main.html)

API Application Programming Interface

Bugzilla Open source bug-tracking software (http://bugzilla.mozilla.org/)

CA Certificate Authority

CASTOR CERN Advanced STORage Manager (http://castor.web.cern.ch/castor/)
CE Computing Element

CERN European Laboratory for Particle Physics (http://www.cern.ch/)

CPU Central Processing Unit

EDG European DataGrid (http://www.edg.org/)

GGF Global Grid Forum (http://www.gridforum.org/)

Gin EDG program to publish resource state information to R-GMA

GK Gatekeeper

GLUE Grid Laboratory Universal Environment (http://www.hicb.org/glue/glue.htm)
GridFTP FTP protocol with GSI security (http://www.globus.org/datagrid/gridftp.html)
GRM EDG application monitoring package

GSI Globus Security Infrastructure (http://www.globus.org/security /)

GUID Grid Unique IDentifier

HTTP Hyper Text Transfer Protocol

IANA Internet Assigned Numbers Authority (http://www.iana.org/)

IC Information Catalog

10 Input/Output

JDL Job Description Language

LDAP Lightweight Directory Access Protocol (http://www.openldap.org/)

LFN Logical File Name

LRC Local Replica Catalog

LSF Load Sharing Facility (http://www.platform.com/products/LSF/)

MON Monitoring node type

MPI Message Passing Interface (http://www-unix.mcs.anl.gov/mpi/)

MSS Mass Storage System

IST-2000-25182 PUBLIC 34

http://www.openafs.org/frameless/main.html
http://bugzilla.mozilla.org/
http://castor.web.cern.ch/castor/
http://www.cern.ch/
http://www.edg.org/
http://www.gridforum.org/
http://www.hicb.org/glue/glue.htm
http://www.globus.org/datagrid/gridftp.html
http://www.globus.org/security/
http://www.iana.org/
http://www.openldap.org/
http://www.platform.com/products/LSF/
http://www-unix.mcs.anl.gov/mpi/

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

P12 Format for certificates combining public and private keys

PBS Portable Batch System (http://www.openpbs.org/)

PEM Format for certificates allows separated public and private keys
PKCS12 Public-Key Cryptography Standards (version 12)

POSIX Portable Operating System Interface for Unix (http://www.opengroup.org/products/publications/catalog/un.htm
version 3)

PROVE Visualization program for GRM

RAL Rutherford Appleton Laboratory (http://www.rl.ac.uk/)
RB Resource Broker

RDBMS Relational Database Management System
RFIO Remote File IO

R-GMA Relational Grid Monitoring Architecture
RLI Replica Location Index

RLS Replica Location Service

RMC Replica Metadata Catalog

RM Replica Manager

ROS Replica Optimization Service

SE Storage Element

SQL Structured Query Language

SRM Storage Resource Model

SSL Secure Sockets Layer

SURL Storage URL

TCP Transmission Control Protocol

TURL Transport URL

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VOMS Virtual Organization Membership Service
VO Virtual Organization

WN Worker Node

WSDL Web Services Description Language
XML eXtensible Markup Language

IST-2000-25182 PUBLIC 35

http://www.openpbs.org/
http://www.opengroup.org/products/publications/catalog/un.htm
http://www.rl.ac.uk/

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

B EU DataGrid Software License

EU DataGrid Software License (v2.0, 09/09/2002)
Copyright (c¢) 2001 EU DataGrid. All rights reserved.

This software includes voluntary contributions made to the EU DataGrid. For more information on the
EU DataGrid, please see http://www.eu-datagrid.org/.

Installation, use, reproduction, display, modification and redistribution of this software, with or without
modification, in source and binary forms, are permitted. Any exercise of rights under this license by you
or your sub-licensees is subject to the following conditions:

1. Redistributions of this software, with or without modification, must reproduce the above copyright
notice and the above license statement as well as this list of conditions, in the software, the user
documentation and any other materials provided with the software.

2. The user documentation, if any, included with a redistribution, must include the following notice:
”This product includes software developed by the EU DataGrid (http://www.eu-datagrid.org/).”

Alternatively, if that is where third-party acknowledgments normally appear, this acknowledgment
must be reproduced in the software itself.

3. The names "EDG”, "EDG Toolkit”, ”EU DataGrid” and ”EU DataGrid Project” may not be used
to endorse or promote software, or products derived therefrom, except with prior written permission
by hep-project-grid-edg-license@cern.ch.

4. You are under no obligation to provide anyone with any bug fixes, patches, upgrades or other mod-
ifications, enhancements or derivatives of the features,functionality or performance of this software
that you may develop. However, if you publish or distribute your modifications, enhancements or
derivative works without contemporaneously requiring users to enter into a separate written license
agreement, then you are deemed to have granted participants in the EU DataGrid a worldwide,
non-exclusive, royalty-free, perpetual license to install, use, reproduce, display, modify, redistribute
and sub-license your modifications, enhancements or derivative works, whether in binary or source
code form, under the license conditions stated in this list of conditions.

DISCLAIMER THIS SOFTWARE IS PROVIDED BY THE EU DATAGRID AND CONTRIBU-
TORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, OF SATISFACTORY QUAL-
ITY, AND FITNESS FOR A PARTICULAR PURPOSE OR USE ARE DISCLAIMED. THE EU DATA-
GRID AND CONTRIBUTORS MAKE NO REPRESENTATION THAT THE SOFTWARE, MODIFI-
CATIONS, ENHANCEMENTS OR DERIVATIVE WORKS THEREOF, WILL NOT INFRINGE ANY
PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

LIMITATION OF LIABILITY THE EU DATAGRID AND CONTRIBUTORS SHALL HAVE NO
LIABILITY TO LICENSEE OR OTHER PERSONS FOR DIRECT, INDIRECT, SPECIAL, INCIDEN-
TAL, CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER IN-
CLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOWEVER CAUSED AND
ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PROD-
UCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IST-2000-25182 PUBLIC 36

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

C Changing Certificate Formats

C.1 P12 Format to PEM Format

Many of the certificate authorities deliver certificates through a web browser. To use these certificates
with Globus, they must be exported from the browser and then reformatted for Globus. Exporting is
browser-specific so you will need to follow the help provided with your browser. Once you have extracted
the certificate you should have a file with a p12 extension. This file is in the PKCS12 format; you will need
to change this to PEM format. If the edg-utils package is installed on your machine, simply executing
/opt/edg/bin/pkesl2-extract will create appropriate certificate and key files and place them in the
standard location. This is a convenience method for the following;:

openssl pkcsl2 -nocerts \
-in cert.pl2 \
-out “user/.globus/userkey.pem

openssl pkcsl2 -clcerts -nokeys
-in cert.pl2
-out “user/.globus/usercert.pem

The first command gives you your private key; this file must be readable only by you (e.g. unix permission
0600). The second command gives your public certificate (e.g. unix permission 0644). The ~ user should
be replaced by the path to your home area. The .globus subdirectory is standard place to put your
certificates.

C.2 PEM Format to P12 Format

Popular browsers typically use certificates in PKCS12 format. Consequently you will need to modify the
format of the PEM certificates used for Globus to use them within a browser. To change a certificate
from PEM format into PKCS12 format (on a machine with edg-utils installed), just issue the command
/opt/edg/bin/grid-mk-pkcs12. Again, this is a convenience method for the following:

openssl pkcsl2 -export \
-out file_name.pl2 \
-name "My certificate" \
-inkey “user/.globus/userkey.pem \
-in “user/.globus/usercert.pem

where file name.p12 is the name of the PKCS12 certificate, and the ~ user in the last two lines should
be replaced by the path to your home area. You must then import the certificate into your browser. (See

Section m)

IST-2000-25182 PUBLIC 37

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

D Information Schema

This appendix describes two major parts of the EDG schema—the GLUE schema and the Service and
ServiceStatus tables. Note that in addition to the fields shown here there is a pair of fields appended to
each of the R-GMA tables: the “MeasurementDate” and “MeasurementTime”.

D.1 GLUE

Most of the published information conforms to the GLUE schemaﬂ version 1.1. EDG has defined a
mapping from the LDAP version of this GLUE schema to a relational schema for R-GMA. This is in
three parts for the CH?| the SH| and the CESEBind}

The GLUE schema is represented by a UML diagram to describe the relationships between the different
objects.

If we consider the example of the GlueCE, we see in the LDAP schema:

objectclass (1.3.6.1.4.1.8005.100.2.1.1

NAME ’GlueCE’

DESC ’Info for Computing Element service’
SUP ’GlueCETop’

STRUCTURAL

MUST (GlueCEUniqueID)

MAY (GlueCEName $ GlueCEHostingCluster))

but there are also other classes with a 1:1 relationship with the “GlueCE”, such as “GlueCEInfo”:

objectclass (1.3.6.1.4.1.8005.100.2.1.2

NAME ’GlueCEInfo’

DESC ’General info for the Queue associated to the CE’

SUP ’GlueCETop’

AUXILIARY

MAY (GlueCEInfoTotalCPUs $ GlueCEInfoLRMSType $ GlueCEInfolLRMSVersion

$ GlueCEInfoGRAMVersion $ GlueCEInfoHostName $ GlueCEInfoGatekeeperPort))
and “GlueCEState”:

objectclass (1.3.6.1.4.1.8005.100.2.1.3

NAME ’GlueCEState’

DESC ’CE State info’

SUP ’GlueCETop’

AUXILIARY

MAY (GlueCEStateRunningJobs $ GlueCEStateWaitingJobs $ GlueCEStateTotalJobs

$ GlueCEStateStatus $ GlueCEStateWorstResponseTime $ GlueCEStateEstimatedResponseTime
$ GlueCEStateFreeCpus))

Thttp://www.cnaf.infn.it/ sergio/datatag/glue/
2http://hepunx.rl.ac.uk/edg/wp3,/documentation/doc/schemas/Glue-CE.html
Shttp://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/Glue-SE.html
4http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/Glue-CESEBind.html

IST-2000-25182 PUBLIC 38

http://www.cnaf.infn.it/~sergio/datatag/glue/
http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/Glue-CE.html
http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/Glue-SE.html
http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/Glue-CESEBind.html

EDG Users’ Guide

Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

The only attribute which is compulsory (with the MUST keyword) is the “GlueCEUniqueID” which is
defined as:

attributetype (1.3.6.1.4.1.8005.100.2.2.1.1

NAME ’GlueCEUniquelD’

DESC A CE Unique ID’

EQUALITY caselgnoreIA5Match

SUBSTR caselgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

SINGLE-VALUE)

You will note the presence of the keyword SINGLE-VALUE indicating that this attribute may only

appear once in an object.

Now take a look at the GlueCE table:

UniquelID VARCHAR(128) A CE Unique ID

Name VARCHAR(255) name of this CE could be the name of the local
queue associated with it

GlueClusterUniquelD VARCHAR(100) Relates to GlueCluster

TotalCPUs INT Number of CPUs available to the queue

LRMSType VARCHAR(255) Name of local resource management system

LRMSVersion VARCHAR(255) Version of local resource management system

GRAMVersion VARCHAR(255) The GRAM version

HostName VARCHAR(128) Fully qualified hostname for host where gate-
keeper runs

GatekeeperPort VARCHAR(128) Port number for the gatekeeper

RunningJobs INT Number of jobs in a running state

WaitingJobs INT Number of jobs that are in a state different
than running

TotalJobs INT Number of jobs in the CE

Status VARCHAR(255) States a queue can be in

WorstResponseTime INT Worst time between job submission till when
job starts its execution

EstimatedResponseTime INT Estimated time between job submission till
when job starts its execution

FreeCpus INT Number of free CPUs available to a scheduler

Priority INT Info about the Queue Priority

MaxRunningJobs INT The maximum number of jobs allowed to be
running

MaxTotalJobs INT The maximum allowed number of jobs in the
queue

MaxCPUTime INT The maximum CPU time allowed for jobs sub-
mitted to the CE in mins

MaxWallClockTime INT The maximum wall clock time allowed for jobs
submitted to the CE in mins

InformationServicctURL ~ VARCHAR(128) URL of the GRIS

The table name is identical to the main LDAP objectclass (in this case “GlueCE”) and the attributes
which must be globally unique in LDAP are taken from the LDAP names but without the prefix of the
LDAP objectclass. So “GlueCEUniquelD” becomes simply “UniquelD”. It is shown bold as it is the
primary key of the table. The next field is “Name” (derived from “GlueCEName”).

The next field would have been derived from the LDAP attribute “GlueCEHostingCluster”, however this
attribute is deprecated so we skip over it.

IST-2000-25182 PUBLIC

39,42

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

The next field is “GlueClusterUniquelD”. This is the standard way we have to chosen to express re-
lationships by means of a foreign key. This is constructed by taking the name of the related table
(“GlueCluster”) and appending the name of the primary key of that table - which in this case is also
“UniquelD” as attributes are local to a table and not global.

The next bunch of attributes is derived from those of the object classes “GlueCEInfo” and “GlueCEState”
and “GlueCEPolicy” (not shown above).

Finally we have the LDAP object class which has one compulsory attribute - but it is not single valued:

attributetype (1.3.6.1.4.1.8005.100.2.2.5.1

NAME ’GlueCEAccessControlBaseRule’

DESC ’The rule that grant/deny access of this service’
EQUALITY caselgnoreIA5Match

SUBSTR caselgnoreIA5SubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

objectclass (1.3.6.1.4.1.8005.100.2.1.5

NAME ’GlueCEAccessControlBase’

DESC ’Info of a VO which users are allowed to access the CE’
SUP ’GlueCETop’

AUXILIARY

MUST (GlueCEAccessControlBaseRule))

So a GlueCE may have many values of “GlueCEAccessControlBaseRule”. This problem of repeated
attributes is handled in the normal way in the relational model by defining an extra table “GlueCEAc-
cessControlBaseRule”

GlueCEUniqueID VARCHAR(128) Relates users to CE

Value VARCHAR(128) The rule that grant/deny access of this service

This table name is identical to that of the LDAP attribute. The value of the quantity is called “Value”
and in each case there is a foreign key back to the object to which it is related. In this case this is the
“UniquelD” within the table “GlueCE” so it is “GlueCEUniqeID”. Finally note that to identify a row
uniquely within this table requires both attributes — so the primary key is a pair of fields.

Looking again at the relational schema you will see the type of each attribute and a comment.

D.2 Service and ServiceStatus

The Service information is meant to represent what services should exists and the ServiceStatus their
current status. The tables are defined in misd and look like:

Service

URI VARCHAR(255) URI to contact the service

VO VARCHAR(50) Where info should be published - or an empty
string to indicate all

type VARCHAR(50) Type of service (e.g. EDGResourceBroker)

emailContact VARCHAR(50) The e-mail of a human being to complain to

site VARCHAR(50) Domain name of site hosting the service

secure VARCHAR(1) "y” or ”n” - indicates whether or not this is a
secure service

majorVersion INT Version of protocol not implementation

minorVersion INT Version of protocol not implementation

patchVersion INT Version of protocol not implementation

Shttp://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/misc.html

IST-2000-25182 PUBLIC 40

http://hepunx.rl.ac.uk/edg/wp3/documentation/doc/schemas/misc.html

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

ServiceStatus

URI VARCHAR(255) URI to contact the service

status INT status code. 0 means the service is up.

message VARCHAR(255) Message corresponding to status code
Rows are published to the Service table around once an hour by a cron job. This shows which services
ought to exist. Information system code checks the published services periodically and publishes their
status in the ServiceStatus table.

IST-2000-25182 PUBLIC 41

EDG Users’ Guide Doc. Identifier:
DataGrid-06-TED-0109-2-2

Date: October 14, 2003

E GridFTP

Management and transfer of files is now better handled by the replica manager commands; however direct
use of the GridFTP commands is sometimes useful for debugging.

E.1 File Transfers

There is often a need to manually transfer files from one node to another. The tool for doing so is
globus-url-copy; the older gsincftp commands are deprecated by Globus and no longer part of the
EDG release. The command syntax

globus-url-copy [options] sourceURL destURL

is rather simple and the -help option sufficiently explains the command’s options.

Unfortunately, the inline help does not list the protocols supported or give examples of the syntax. The
supported protocols are: file, gsiftp, and http. Examples are:

file:///home/loomis/stuff.txt

gsiftp://testbed0ll.cern.ch/~/stuff.txt
gsiftp://testbed011.cern.ch//tmp/stuff.txt
http://marianne.in2p3.fr/datagrid/documentation/daemon-guidelines.html

For the file protocol only absolute file names are accepted. All of the URLs must be fully specified, e.g.
you cannot omit the file name on the output URL. For the gsiftp protocol, the tilde syntax can be used
to specify a home area.

One great advantage of globus-url-copy is its ability to make third-party transfers. This allows transfers
between two remote machines without having to funnel the data through your own machine. This avoids
copying the data twice and is especially important if you are executing the command from a machine
with a slow network connection or with insufficient disk space.

E.2 Client Commands

There are a set of GridFTP client commands available to do simple management of directories and files
in a GridF'TP server. These commands are:

edg-gridftp-exists
edg-gridftp-1ls
edg-gridftp-mkdir
edg-gridftp-rename
edg-gridftp-rm
edg-gridftp-rmdir

and perform the equivalent of their unix namesakes. The only unusual one, edg-gridftp-exists, checks
for the existence of a file or directory. Man pages for each of these commands list the valid options and
arguments. All of the commands also recognize the --help option.

Note: The edg-gridftp-rename, -rm, and -rmdir commands should only be used on files which are
not managed by a higher-level service such as the Replica Manager. Using them in this situation may
destroy the coherency of the replica database.

IST-2000-25182 PUBLIC 42

	Overview
	Getting Started
	Obtaining a Certificate
	Installing User Certificates
	Virtual Organizations
	``Logging into the Grid''

	Grid Information
	Job Submission
	Job Submission Commands
	Job Description File
	Long-lived Jobs
	Interactive, MPI, and Checkpointed Jobs
	Examples

	Job Environment
	Data Management
	Terminology
	Replica Location Service
	Replica Manager
	Examples

	Storage Element
	TURLs
	Special TURLs

	Metadata Management
	Application Monitoring with GRM/PROVE
	Support
	Website
	Bugzilla
	Contacts

	Glossary
	EU DataGrid Software License
	Changing Certificate Formats
	P12 Format to PEM Format
	PEM Format to P12 Format

	Information Schema
	GLUE
	Service and ServiceStatus

	GridFTP
	File Transfers
	Client Commands

