
DataGRID

EDG-VOMS-ADMIN TESTING PLAN

Document identifier: edg-voms-admin-testplan

EDMS id:

Date: January 14, 2004

Work package: WP07: Security

Partner(s): CERN, ELTE

Lead Partner: CERN

Document status: WORKING DRAFT

Author(s): ?kos Frohner

File: edg-voms-admin-testplan

Abstract: A document to describe the planned and executed tests on this package.

IST-2000-25182 PUBLIC 1/7

EDG-VOMS-ADMIN TESTING PLAN
Doc. Identifier:

edg-voms-admin-testplan

Date: January 14, 2004

CONTENTS

1. OVERVIEW 4

2. GENERAL CONFIGURATION 4

2.1. CONFIGURATION FILE . 4

2.2. INSTALL AND REMOVE . 5

2.3. CONFIGURATION. 5

3. DB ABSTRACTION AND SERVICE CLASSES 5

3.1. AUTHORISATION TESTS. 5

3.2. RUNNING THE TESTS . 6

4. SOAP INTERFACE 6

5. WEB INTERFACE, SERVLETS 6

5.1. UNIT TESTS . 6

5.2. INTEGRATION TESTS . 6

6. CLIENT SIDE APPLICATIONS 7

IST-2000-25182 PUBLIC 2/7

EDG-VOMS-ADMIN TESTING PLAN
Doc. Identifier:

edg-voms-admin-testplan

Date: January 14, 2004

Document Log

Issue Date Comment Author
0-1 2003-08-04 First draft ?kos Frohner

IST-2000-25182 PUBLIC 3/7

EDG-VOMS-ADMIN TESTING PLAN
Doc. Identifier:

edg-voms-admin-testplan

Date: January 14, 2004

1. OVERVIEW

There are four major components of theedg-voms-admin package:

• database abstraction classes

• service implementation classes for the SOAP interface

• web servlets for the web interface

• client side applications

These components (except the database abstraction classes) have to be tested for correct functionality,
reliability and secure operation.

2. GENERAL CONFIGURATION

Most of these tests require a running and properly configured database back-end and installed software.
There aretargetsin the build configuration (build.xml) to automate these procedures:

test.install Install the software into a test environment.

test.configure Configure the software.

test.unconfigure Remove the test configuration.

test.remove Remove the installed software.

These targets can be also used independently: if there is an already installed system, then one can skip
test.install(andtest.remove) and only configure the system for testing.

Sinceedg-voms-admin is prepared for multi-instance operation the testing cannot even disturb a produc-
tion system, given the name of the testing Virtual Organisation (VO) is different from others.

2.1. CONFIGURATION FILE

The parameters of the test targets are controlled by thetest.properties file. The build process looks for
the file at the following locations (in this order):

1. test.properties (in the current/top-level directory)

2. build/test.properties (must be generated here!)

3. config/tests/test.properties (defaults)

The configuration file can define the following values (with defaults):

test.vo TestVO
test.voalias test
test.port 8443
test.dba.user root
test.dba.pwd root
test.prefix build/tests/edg

IST-2000-25182 PUBLIC 4/7

EDG-VOMS-ADMIN TESTING PLAN
Doc. Identifier:

edg-voms-admin-testplan

Date: January 14, 2004

2.2. INSTALL AND REMOVE

The test.installtarget creates some essential directories and callsinstall to do the rest of the job. It has
the same effect as if the software was installed from RPM, although the prefix directory will be most
likely different: test.prefix.

2.3. CONFIGURATION

Thetest.configuretarget calls theedg-voms-admin-configure script to generate the configuration files and
create a schema in the database.

The test.unconfigureremoves all the changes made by the previous option: it removes the files and also
the created database!

It would be quite inconvenient in case a test fails, because it would prevent the detailed investigation. To
prevent such an accident thetest.unconfiguretarget fails to execute if thetest.failedproperty is set in the
build process.

3. DB A BSTRACTION AND SERVICE CLASSES

Unit tests for the database abstraction layer and for the services are created along the implementation
classes.

For example theVOMSAdmin interface is implemented asVOMSAdminSoapBindingImpl class and the
corresponding unit test is inVOMSAdminSoapBindingImplTest1

These unit tests are using theJUnit unit testing framework for Java, which can be easily integrated into
the build system.

3.1. AUTHORISATION TESTS

The main difficulty in these tests is the proper configuration of the environment, including the client’s
identity. These settings are not passed as parameters to the functions, but taken from theSecurityContext
object2.

To simplify the testing of the pure functionality we allow bypassing of the authorisation checks in special
circumstances. These special parameters can be simply configured by theInitSecurityContext.initBypassSC()
method.

To test authorisation we can also configure the context to artificial client identities with a code like to
this:

SecurityContext sc = new SecurityContext ();
SecurityContext.setCurrentContext (sc);

sc.setAuthorizedAttributes (Arrays.asList (attributes));

sc.setClientName (clientName);
sc.setIssuerName (clientIssuer);

1look for *Test.java classes in theorg.edg.security.voms.service package!
2thread local context; see more in theedg-java-security package

IST-2000-25182 PUBLIC 5/7

EDG-VOMS-ADMIN TESTING PLAN
Doc. Identifier:

edg-voms-admin-testplan

Date: January 14, 2004

3.2. RUNNING THE TESTS

To run the test suite execute the following command:

ant service-test

After running the tests one can generate the detailed description of the unit tests and the corresponding
reports by

ant doc.testdoc

the result is placed in thedist/doc/tests directory.

4. SOAP INTERFACE

SOAP interface over the service classes is provided byAxis.

The Axis framework provides the generation of WSDL from Java interfaces, Java wrapper classes from
WSDL and the invocation service embedded in Tomcat.

Since we did not modify this layer we will not test this functionality separately.

5. WEB INTERFACE , SERVLETS

Not implemented yet.

The web interface is provided by theorg.edg.security.voms.webui.* packages by servlets, which have
their own tests alongside3

The web interface is built on top of the service classes, so the tests are focused on the interpretation of
parameters and rendering the results, rather than on the functionality itself.

There are two main groups of these tests: with and without the servlet container.

5.1. UNIT TESTS

The interpretation of the parameters and rendering of the results can be tested without the servlet con-
tainer by simulating therequestsand analysing theresponses. In this work a great deal of the routine
work is provided by theMockObjects4 and HttpUnit5 frameworks.

5.2. INTEGRATION TESTS

Not implemented yet.

Of course certain tests cannot be run without the configuring the servlet container and processing requests
through the whole system. Such a test simulates a deployment and configuration and tests the various
components in their production environment.

For these tests we use the Cactus6 framework and the Tomcat servlet container.

Test cases cover:
3look for *Test.java classes in theorg.edg.security.voms.webui package!
4http://www.mockobjects.org
5http://httpunit.sourceforge.net
6http://jakarta.apache.org/cactus/

IST-2000-25182 PUBLIC 6/7

http://www.mockobjects.org
http://httpunit.sourceforge.net
http://jakarta.apache.org/cactus/

EDG-VOMS-ADMIN TESTING PLAN
Doc. Identifier:

edg-voms-admin-testplan

Date: January 14, 2004

• basic configuration tests (static pages, Axis and web UI servlets)

• security settings (CA, CRL and service certificate)

• authentication and authorisation (client certificate)

The test cases doesn’t use real certificates, but ones generated only for test purposes.

6. CLIENT SIDE APPLICATIONS

Not implemented yet.

The final stage of the testing is via client applications. Since the web interface’s functionality is covered
by the integration tests we only test the command line clients. These tests also use the generated test
certificates.

These tests can be configured on a production system as well, so this test suit packaged into RPM to
provide a deployment test suite.

IST-2000-25182 PUBLIC 7/7

	1. Overview
	2. General Configuration
	2.1. Configuration File
	2.2. Install and Remove
	2.3. Configuration

	3. DB Abstraction and Service Classes
	3.1. Authorisation Tests
	3.2. Running the Tests

	4. SOAP Interface
	5. Web Interface, Servlets
	5.1. Unit Tests
	5.2. Integration Tests

	6. Client Side Applications

