
DataGRID

EDG-VOMS-ADMIN DEVELOPER’S GUIDE

DESCRIBING EDG-VOMS-ADMIN RELEASE 0.7

Document identifier: edg-voms-admin-dev-guide

EDMS id:

Date: January 14, 2004

Work package: WP07: Security

Partner(s): CERN, ELTE

Lead Partner: CERN

Document status: WORKING DRAFT

Author(s): Károly Lőrentey, Ákos Frohner

File: edg-voms-admin-dev-guide

Abstract: VOMS is the Virtual Organization Membership Service. This document provides a general
overview of the internal architecture of the edg-voms-admin administration service and a description of
the database scheme used by that service.

This document is intended to be an introductory overview of edg-voms-admin for developers who need
to write client interfaces to the SOAP API, or need to change or debug edg-voms-admin itself. The
document is not meant to be a public user guide for the service. Nor it is intended to be a complete,
up-to-date guide of the internals of edg-voms-admin; for the exact details, the developer should refer to
the API documentation (available in Javadoc), along with the source code of the service itself.

Note that this document describes edg-voms-admin release 0.7; some of the information contained herein
may not be applicable to earlier or later releases of the service.

IST-2000-25182 INTERNAL 1/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

CONTENTS

1. BASIC CONCEPTS 3

1.1. CONTAINERS . 3

1.2. FULLY QUALIFIED CONTAINER NAMES . 3

2. ARCHITECTURAL OVERVIEW 3

2.1. INTRODUCTION . 4

2.2. HIGH-LEVEL OPERATIONS: ACTIONS AND QUESTIONS. 4

2.3. LOW-LEVEL DATABASE OBJECT MANIPULATIONS 5

2.4. TRANSACTION MANAGEMENT . 7

2.5. REQUEST HANDLING . 7

3. DATABASE SCHEMA 8

3.1. OVERVIEW . 8

3.2. TRACEABILITY FEATURES . 9

3.3. INDIVIDUAL TABLE DESCRIPTIONS . 10

3.3.1. THESEQUENCESTABLE . 10

3.3.2. THEREALTIME TABLE . 10

3.3.3. THEADMINS TABLE . 11

3.3.4. THECA TABLE . 12

3.3.5. THEUSR TABLE . 12

3.3.6. THEGROUPSTABLE . 13

3.3.7. THEROLES TABLE . 14

3.3.8. THECAPABILITIES TABLE . 14

3.3.9. THEM TABLE . 14

3.3.10. THEACL TABLE . 15

3.3.11. THEREQUESTSTABLE . 16

4. GLOSSARY 16

IST-2000-25182 INTERNAL 2/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

1. BASIC CONCEPTS

In this section, we introduce a number of important concepts that are needed to understandedg-voms-
admin.

1.1. CONTAINERS

1.2. FULLY QUALIFIED CONTAINER NAMES

VOMS defines groups, roles and capabilities. Combinations of the names of these serve as containers
for users. The combinations of these names define unique containers.

Let’s see some examples of basic containers and their FQCN counterparts:

VO Fred /Fred
group production /Fred/production
group replicator /Fred/replicator
role VO-Admin /Fred/Role=VO-Admin
role Admin /Fred/Role=Admin
capability long-job /Fred/Capability=long-job
capability large-space /Fred/Capability=large-space

In a VOMS credential triplets of these basic containers are returned. Since roles and capabilities can not
have subcontainers, we order the groups first in an FQDN.

Let’s see a subgroup inside replicator:

subgroup optimisation /Fred/replicator/optimisation

We may add a role name to this, which defines the admins of this subgroup, but not the admins of any
other group (or container):

/Fred/replicator/optimisation/Role=Admin

In summary a FQCN looks like this:

/VO[/group[/subgroup(s)]][/Role=role][/Capability=cap]

The name has to match the following regexp:

ˆ(/[\w-]+)+(/Role=[\w-]+)?(/Capability=[\w\s-]+)?$

(\w is [a-zA-Z0-9], \s includes the horizontal twhite space characters.)

2. ARCHITECTURAL OVERVIEW

This section presents a broad overview of the implementation ofedg-voms-admin. After reading this
section, the reader should have a basic understanding of what goes on insideedg-voms-admin while it
processes a request, and she should be able to understand the detailed API documentation embedded in
the source as Javadoc comments.

IST-2000-25182 INTERNAL 3/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

2.1. INTRODUCTION

The implementation ofedg-voms-admin follows a basic two-level layered architecture design: SOAP
API calls are first translated into high-levelactionsandquestions, Java objects that represent high-level,
user-visible operations on the VO database. The implementation of an action or a question is a problem-
domain description of how to execute that operation, including a separate description of the necessary
authorization checks. An operation is essentially translated into a series of object manipulations in the
problem domain: manipulations of users, groups and other such entities inedg-voms-admin.

The implementation of these database objects comprise the lower layer ofedg-voms-admin: it is this
layer which translates these low-level object manipulations into concrete SQL statements.

Extreme care was taken to keep the high-level operation descriptions short and clean; there is an elaborate
system of helper classes that relieve the burden of transaction management and (most of) error handling
from the operation implementations.

2.2. HIGH-LEVEL OPERATIONS : ACTIONS AND QUESTIONS

Theedg-voms-admin service defines a number of SOAP APIs which are used by the clients to communi-
cate with the service in a stateless fashion: method calls initiated by a client are executed independently
of each other. No state information is retained on the service side between two successive calls of the
same client1. (Of course, the result of database updates made by earlier calls are visible to later accesses.)

Each SOAP API call is directly mapped to a so-calledoperationby the implementation of the SOAP
interface.

Operations are represented by Java objects that define how to perform the operation, and (separately)
how to verify that the client is authorized to execute it.

There are two basic kinds of operations. Those operations which change the VO database, but do not
need to return a value are calledactions. VOMSAdmin.createUser() andVOMSAdmin.addMember() are
two examples of SOAP calls that are mapped into actions. In this case, the actions will be instances of
the classesCreateUserAction andAddGroupMemberAction in packageorg.edg.security.voms.
operation. Java classes that define action types must implement theAction interface, defined in the
same package.

Those operations which return a value by querying the database, but do not need to perform changes
are calledquestions. Questions must implement theorg.edg.security.voms.operation.Question
interface. The classorg.edg.security.voms.operation.GetUserQuestion demonstrates a typical
question, corresponding to theVOMSAdmin.getUser() SOAP API method.

Questions and actions need not care about setting up a database connection, or performing transaction
management. All they need to do is call the needed low-level database object manipulations provided by
theorg.edg.security.voms.database package.

For example, the implementation of theVOMSAdmin.createUser() SOAP API method looks like this
(modulo logging):

synchronized public void createUser (User user)
throws RemoteException {
Database.perform (new CreateUserAction (user));

}
1The service-side HTML user interface bypasses the SOAP calls by directly calling the Java methods implementing it, and

reuses the security context for the series ofedg-voms-admin API calls that are necessary to process a single HTTP request
made by the client. This “grouping” of API calls does not affect the behaviour of the service; the core ofedg-voms-admin still
executes each API call as if they came from separate clients.

IST-2000-25182 INTERNAL 4/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

(Seeorg.edg.security.voms.service.admin.VOMSAdminSoapBindingImpl.java.)

As you can see, all the parameters that are necessary to perform an operation are given to it during
instantiation. In this case, the SOAP parameteruser gets passed on to the action’s constructor.

The actual implementation of the create user action is given below:

package org.edg.security.voms.operation;
final public class CreateUserAction extends ActionHelper {

static private final Logger log = Logger.getLogger (CreateUserAction.class);
/** Parameter: The user to be created. */
private User user = null;
public void checkPermission() throws VOMSException {

DBGroup.getVOGroup().checkPermission (Operation.ADD);
}
public void perform() throws VOMSException {

DBUser u = DBUser.createUser (user.getDN(),
user.getCN(),
DBCA.getInstance (user.getCA()),
user.getCertUri(),
user.getMail());

log.info ("User " + u.getDN() + " created");
}
public CreateUserAction (User user) {

this.user = user;
}

The implementation of operations should be a self-evident description of what is to be done in the
database. We check authorization by requiring that the user is able to do an ADD operation on the
VO group. In this case, the actual operation is performed by a simple low-level method call (but note
that the CA must be passed as a database object, not just a simple string).

Note the apparent lack of transaction management or even error handling. The operation passes all ex-
ceptions that are thrown during its execution to the caller, who is responsible for starting the appropriate
transaction before calling the operation’s methods, catching any exceptions, and committing the trans-
action or rolling it back when the action has completed. As doing this right is a tedious procedure that
is easy to break, a helper class,org.edg.security.voms.database.connection.Database is avail-
able to do all this bookkeeping. It is not recommended to bypass theDatabase class by directly calling
thecheckPermission(), perform() or ask() methods of an operation. This should not be necessary
in any circumstances. In fact, one of the reasons for which the concept of operations was added to
edg-voms-admin was to make theDatabase class possible.

2.3. LOW-LEVEL DATABASE OBJECT MANIPULATIONS

As described above, operations essentially translate user-visible high-level SOAP methods into low-level
abstract database object manipulations. These objects and their methods for manipulation are imple-
mented by classes in the packageorg.edg.security.voms.database. The names of these classes all
have an uppercaseDB prefix in order to distinguish them from those that are used as parameter and result
types of high-level operations.

Instances of theseDB* classes are abstract representations of one or more rows in a single database
table. Their manipulation methods issue low-level SQL statements that query or update the database.

IST-2000-25182 INTERNAL 5/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

Manipulations that update the database may only be called by Actions. Query manipulations may be
called by both Actions and Questions.

A typical update manipulation for creating a new user is shown below. Note that manipulations must
thoroughly check their arguments, and must not accept illegal values. (Container names are an exception
to this rule; the validity of a container name in the defined naming scheme must be checked by the
operation.)

The manipulation retrieves the currently available thread-local database handler from theCurrentConnection
class, thus the need to explicitly pass database connections to manipulations is eliminated. Another im-
plementation detail to notice is that manipulations are not allowed to throwSQLExceptions. They
must convert them to meaningful application-specific errors, or (if all else fails) wrap them up in a
DatabaseError.

/** Creates a new user in the database. */
public static DBUser createUser (String dn, String cn, DBCA ca,

String certUri, String mail)
throws GeneralDatabaseException, ArgumentException {
if (dn == null)

throw new ArgumentException ("User’s DN must not be null");
if (cn == null)

throw new ArgumentException ("User’s CN must not be null");
if (ca == null)

throw new ArgumentException ("User’s CA must not be null");
try {

// Check that user is not in database.
// TODO: This is clumsy.
try {

DBUser old = DBUser.getInstance (dn, ca);
throw new AlreadyExists (old.toString());

} catch (NotInDatabase e) {
// Ignore, this is expected.

}

UpdateWrapper u = CurrentConnection.getUpdate();

// Create the new user.
PreparedStatement s = u.getStatement

("INSERT INTO usr VALUES (?, ?, ?, ?, ?, ?, ?, ?)");
seq.setToNextval (s, 1);
s.setString (2, dn); s.setInt (3, ca.getId ());
s.setString (4, cn); s.setString (5, mail);
s.setString (6, certUri); s.setLong (7, u.getClientId ());
s.setLong (8, u.getTransaction ());
s.executeUpdate ();

DBUser newUser = null;
try {

newUser = DBUser.getInstance (dn, ca);
}
catch (NotInDatabase e) {

throw new InconsistentDatabase
("Just created user \"" + dn + "\" failed to appear in database.");

}

// Automatically add her to the VO group.
// TODO: Do something sensible with vip and cip.
s = u.getStatement ("INSERT INTO m VALUES (?, ?, NULL, NULL, 0, 0, ?, ?)");
try {

s.setLong (1, newUser.getId ()); s.setLong (2, DBGroup.VO_GROUP_ID);
s.setLong (3, u.getClientId ()); s.setLong (4, u.getTransaction ());

IST-2000-25182 INTERNAL 6/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

s.executeUpdate ();
}
finally {

s.close ();
}

return newUser;
}
catch (SQLException e) {

throw new DatabaseError (e);
}

}

2.4. TRANSACTION MANAGEMENT

Transaction management inedg-voms-admin is closely related to the handling of database connections.
The packageorg.edg.security.voms.database.connection is responsible for database connection
management. It contains a simple database connection pool implementation (to be replaced later by
standard JNDI connection pools),ConnectionPool.

edg-voms-admin defines three types of database connections:

QueryWrapper for read-only database manipulations,

UpdateWrapper for database update manipulations, and

DirectUpdate for direct execution of SQL statements (for special internal purposes).

The first two connection types are used by theDB* classes. Update manipulations require anUpdateWrapper;
queries can work with either anUpdateWrapper or aQueryWrapper2.

DirectUpdate is for executing SQL statements for special, internal purposes;DirectUpdates are used
for e.g. sequence generation (seeorg.edg.security.voms.database.Sequence) or request handling
(seeorg.edg.security.voms.request.Request).

Database connections may be allocated from their respective connection pools by static factory methods
in the database connection class:UpdateWrapper.begin(), QueryWrapper.get(), DirectUpdate.begin().
Note that these methods are normally not called directly, though: theDatabase helper class takes care
of all the work that is needed for accurate transaction management and error handling, including support
for transaction restarts.

2.5. REQUEST HANDLING

Requests are entities requesting a certain action in the database. They are submitted by clients who do not
have the necessary rights to do the operation themselves. Typically, each new request needs the approval
of a VO administrator before the operation is executed. Clients submitting requests may or may not be
members of the VO: indeed, requests for VO membership are expected to be the most important request
type.

Requests are about the execution ofactions, in the sense of section2.2.. Requesting a question is not
possible; allowing this would not be particularly useful.

TheAction instance that the submitter requests to be performed is included in the request itself. Each
request has such an instance. If the request is accepted, it executes the action by calling itsperform()

2In fact, queries may work with any of the three connection types, but issuing a query under aDirectUpdate is strongly
discouraged.

IST-2000-25182 INTERNAL 7/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

method. An action normally has its own set of parameters that are stored as attributes of the action object,
as seen in section2.2..

Each request has a request type that defines the exact workflow of the request.Request typesare classes
derived fromorg.edg.security.voms.request.Request. The attributes of a concrete request class
define the parameters of the request. (Typical request parameters are the id of the client who submitted
the request, the action that is requested by the client, etc.) Requests in VOMS are basically state machines
– the request type defines the available states and the behaviour of the machine with respect to incoming
events.

Thestatesof these state machines are instances of special inner classes of the request type class, derived
from org.edg.security.voms.request.Request.State. The set of possible states of a request type
define its behaviour with respect to incoming events. If needed, states can access the request parameters
inside the enclosing request instance by means of lexical closure.

Requests maintain a chronicle of things that happened to them. The chronicle is a list of timestamps,
client identifications and HTML event descriptions that can be retrieved by callingRequest.getChronicle().
The chronicle is intended to be presented to the user when she is handling (accepting, denying, etc.) the
request.

Requests are stored in the database as serialized Java objects. To speed up request handling, some of the
request information is extracted to database-native, indexable columns.

Eventsare instances of classes derived from the abstractorg.edg.security.voms.request.Event
class. These objects describe the various outside events that may happen to a request (e.g., an adminis-
trator accepts the request, or a timeout happens). If a request is given a new event, it forwards it to its
current state, which decides what to do with the event. The processing of an event normally involves the
transition to a new state.

3. DATABASE SCHEMA

The information that comprises the VO is stored in a MySQL relational database using its transaction-
safe InnoDB table backend. The database is queried through a C server (not described here) and modified
through a Java service.

In this section, we describe the database schema used by VOMS. After reading this section, the reader
should feel comfortable with operating the underlying database ofedg-voms-admin. The information
contained in this section should be enough to debug and fix small database inconsistencies as reported
by edg-voms-admin.

3.1. OVERVIEW

Data tables These tables contain the actual data that define the VO. Changes to these tables are
archived for traceability.

Name Description
ACL Access control lists (ACL) of containers.

GROUPS List of groups in the VO.
M Mapping between members and containers (groups, roles and capabilities).

ROLES List of roles in the VO.
CAPABILITIES List of capabilities in the VO.

USR List of users in the VO.

IST-2000-25182 INTERNAL 8/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

Archive tables These tables contain old data that was deleted or changed in data tables. The defini-
tion of archive tables is similar to their corresponding data tables, but extended to support recording of
expiration time and administrator information. This archive of changes will be used to implement the
edg-voms-admin traceability extensions.

Name Description
ACLD Archive of container ACLs.

GROUPSD Archive of groups in the VO.
MD Archive of the mapping between members and containers.

ROLESD Archive of roles in the VO.
CAPABILITIESD Archive of capabilities in the VO.

USRD Archive of users in the VO.

Service tables These auxiliary tables are used byedg-voms-admin for timekeeping, sequence genera-
tion and request handling. Data in these tables is not archived.

Name Description
ADMINS List of entities referenced in ACLs or createdBy fields.

CA Known certificate authorities.
REALTIME Maps transaction ids to timestamps.

SEQUENCES Holds the values for various monotonically increasing sequences.
REQUESTS Contains the entire state of the requests submitted toedg-voms-admin.

Unused tables The following tables are not used in the current implementation ofedg-voms-admin.
Their detailed description is not included in this document. Columns referring to these tables are guar-
anteed to be set to NULL.

Name Description
VALIDITY Membership validity.

PERIODICITY Membership periodicity.
QUERIES User-defined SQL queries.

3.2. TRACEABILITY FEATURES

Data tables have two columns to identify the admininstrator entity and the transaction number that gen-
erated each row in the table.

Column Description
.

createdby The id of the administrator entity that created this row.
createdserial The serial number of the transaction during which this row was created.

Each data table (except CA) has a corresponding archive table that has the exact same schema as its
owner, apart from two extra columns:

Column Description
.

createdby The id of the administrator entity that created this row.
createdserial The serial number of the transaction during which this row was created.

deletedby The id of the administrator entity that deleted or updated this row.
deletedserial The serial number of the transaction during which this row was deleted or

updated.

IST-2000-25182 INTERNAL 9/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

Administrator ids are mapped to DN/CA pairs in theADMINS table. Note that some rows may be
created automatically, without user interaction. In this case,createdby and deletedby point to AD-
MINS entries with a DN that starts with the special prefix/O=VOMS/O=System (this prefix is defined in
org.edg.security.voms.service.Constants.INTERNAL DN PREFIX). None of the above traceabil-
ity columns may be NULL.

3.3. INDIVIDUAL TABLE DESCRIPTIONS

In this section, we briefly describe each table in an order that minimizes the number of necessary cross-
references.

3.3.1. THE SEQUENCES TABLE

TheSEQUENCES table holds the current value of a number of monotically increasing integer sequences
that are used throughout the database for generation of unique numerical ids.

Column Description
name The name of the sequence. This is used in the Java code to refer to the se-

quence.
value The last value that was issued by this sequence. The next value will be the next

integer after the current value.

name V A R C H A R(32) N O T N U L L,
V A L U E B I G I N T,
I N D E X (name)

) T Y P E=InnoDB;

If the database was modified by hand, it may happen that the database administrator created a new row
in one of the data tables but neglected to increment the corresponding sequence value inSEQUENCES.
edg-voms-admin is robust enough to tolerate and fix such small database inconsistencies by updating
sequence values during its startup procedure. It makes not attempt to detect these inconsistencies after
the startup has completed.

Perhaps the most important sequence that is defined in this table istransaction, which is where the se-
rial number of each update transaction comes from. Theedg-voms-admin-configure script initializes
this sequence as follows:

3.3.2. THE REALTIME TABLE

TheREALTIME table maps transaction serial numbers to timestamps. It is useful for finding out when a
particular transaction occured. As it would be inefficient and unnecessary to store a timestamp for each
transaction number,edg-voms-admin only writes a new row to this table if a given amount of time or
number of transactions have passed since the last timestamp was written. (The details of this behaviour
are user-configurable.)

Column Description
transaction The serial number of the transaction.

time The time when the transaction started.

T R A N S A C T I O N B I G I N T U N S I G N E D N O T N U L L,
T I M E T I M E S T A M P N O T N U L L,
P R I M A R Y K E Y(T R A N S A C T I O N),
I N D E X (T I M E)

) T Y P E=InnoDB;

IST-2000-25182 INTERNAL 10/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

3.3.3. THE ADMINS TABLE

The ADMINS table contains details about each entity that appears as a subject in an access control list,
has ever modified the database or handled a request. Thecreatedby anddeletedbycolumns that are
defined in data tables refer to this list of administrators.

There are two kinds of administrator entities that may appear in this table: those corresponding to a
certificate issued by a known CA (individual administrators), and those corresponding to groups, roles
or capabilities of a VO (collective administrators). (Any VO is allowed, not just the one that is defined
by this database. Collective administrators may only be the subject of ACL entries, they may not be
referred to increatedbyor deletedbyvalues. Collective administrators are distinguished from individual
administrators by special DN/CA values. See theorg.edg.security.voms.service.Constants class
for a list of such special CA values; the DN is generally the fully qualified name of the group/role/etc.
that is referred to.

Do not confuse this table with theUSR table; the contents and semantics ofADMINS are independent of
the list of users in the VO in any given instant. A VO user normally does not need to administer the VO,
and thus does not appear in theADMINS table3. Similarly, it is not necessary for an administrator to be a
member of the VO in order to modify the database.

Note that having an entry in theADMINS table is not a prerequisite requirement for modifying the
database; newADMINS rows are automatically created when needed.

Column Description
adminid The administrator entity’s identifier.

dn The distinguished name of the administrator entity.
ca A reference to the CA of the administrator entity.

createdby The administrator entity that created this entry.
createdserial The serial number of the transaction during which this entry was created.

adminid B I G I N T N O T N U L L,
dn V A R C H A R(250) N O T N U L L,
ca S M A L L I N T U N S I G N E D N O T N U L L,
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
P R I M A R Y K E Y (adminid),
U N I Q U E K E Y admin (dn,ca)

) T Y P E=InnoDB;

The ADMINS table contains two entries by default; one is the dummy administrator entry for local
database administrators (who do not have to authenticate themselves to modify the database), and one
for the default collective administrator named VO-Admin:
INSERT INTO admins (adminid, dn, ca, createdBy, createdSerial) VALUES

(1, "/O=VOMS/O=System/CN=Local Database Administrator", 1, 1, 0);

-- The VO-Admin role to allow remote administration
INSERT INTO admins (adminid, dn, ca, createdBy, createdSerial) VALUES

(2, "/$voname/Role=VO-Admin", 4, 1, 0);

(Here,$voname is replaced by the name of the VO.) The local database administrator is also used for
database changes that are done automatically by theedg-voms-admin service.

3A normal user may appear inADMINS if she has previously submitted a request.

IST-2000-25182 INTERNAL 11/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

3.3.4. THE CA TABLE

The CA table contains a list of certificate authorities that are known to this VO. Each user and adminis-
trator of the VO must have a certificate from a CA that appears in this list. Other than that, this table is
purely for reference purposes, it has no other role in access control. The set of CA certificates that are
accepted for authentication over SSL is determined by a process that is entirely independent of this table.
(Although normally this set is a subset of the contents of this table.)

New entries are automatically added to this table when a periodically running background daemon thread
finds new certificates in the/etc/grid-security/certificates/ filesystem directory (another direc-
tory may be specified by thevoms.cafiles configuration property). Note that nothing happens to this
table if a CA certificate is removed from that directory: expired CAs remain listed indefinitely.

edg-voms-admin intentionally defines no user-visible operations for manipulating this table, other than
the above automatic mechanism for discovering new CAs.

Column Description
cid The internal id of the CA.
ca The distinguished name of the CA.

cadescr A textual description of the CA, intended to be presented to users of theedg-
voms-admin client interfaces.

cid S M A L L I N T U N S I G N E D N O T N U L L A U T O_ I N C R E M E N T,
ca V A R C H A R(250),
cadescr V A R C H A R(250),
P R I M A R Y K E Y (cid),
U N I Q U E K E Y ca (ca)

) T Y P E=InnoDB;

The CA table also contains entries for several “virtual CAs” that have no corresponding CA certificate.
These entries are created by theedg-voms-admin-configure script during database installation and
are used in the CA fields of collective administrator entities, and the administrator entity of thelocal
database administratorwho accesses the database without authentication.

1, "/O=VOMS/O=System/CN=Dummy Certificate Authority",
"A dummy CA for local database maintenance.");

INSERT INTO ca (cid, ca, cadescr) VALUES (
2, "/O=VOMS/O=System/CN=Authorization Manager Attributes",
"A virtual CA corresponding to authz manager attributes");

INSERT INTO ca (cid, ca, cadescr) VALUES (
3, "/O=VOMS/O=System/CN=VOMS Group",
"A virtual CA corresponding to a VO group");

INSERT INTO ca (cid, ca, cadescr) VALUES (
4, "/O=VOMS/O=System/CN=VOMS Role",
"A virtual CA corresponding to a VO role");

INSERT INTO ca (cid, ca, cadescr) VALUES (
5, "/O=VOMS/O=System/CN=VOMS Capability",
"A the virtual CA corresponding to a VO capability");

3.3.5. THE USR TABLE

TheUSR table contains the list of users in the VO. Users are never created automatically; the database is
created with an emptyUSR table.

IST-2000-25182 INTERNAL 12/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

Column Description
uid The internal id of the user.
dn The distinguished name of the user, as it appears in her certificate.
ca The CA that issued the user’s certificate.
cn The common name of the user.

mail The email address of the user. Optional.
cauri An optional pointer to the user’s certificate.

createdby The administrator entity that created this entry.
createdserial The serial number of the transaction during which this entry was created.

uid B I G I N T U N S I G N E D N O T N U L L A U T O_ I N C R E M E N T,
dn V A R C H A R(250) N O T N U L L,
ca S M A L L I N T U N S I G N E D N O T N U L L,
cn V A R C H A R(250) N O T N U L L,
mail V A R C H A R(250) D E F A U L T N U L L,
cauri V A R C H A R(250) D E F A U L T N U L L,
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
P R I M A R Y K E Y (uid),
U N I Q U E K E Y dnca (dn,ca),
K E Y dn (dn)

) T Y P E=InnoDB;

3.3.6. THE GROUPS TABLE

The GROUPS table contains the list of groups in the VO, starting with the all-encompassing VO group,
which is created during database initialization.
INSERT INTO groups (gid, dn, parent, aclid, defaultAclid, must,

createdBy, createdSerial) VALUES (1, "/$voname", 1, 1, 2, 1, 1, 0);

(Here,$voname is replaced by the name of the VO.) The VO group is a system group, it may not be
deleted.

Column Description
gid The internal id of the group.
dn The fully qualified group name.

parent The id of the parent of the group. The parent of the VO group is itself.
aclid The id of the group’s access control list.

defaultid The id of the access control list that is used to initialize the ACL’s of the sub-
groups of this group.

must A non-null value means the group is not deniable. The currentedg-voms-
admin implementation always sets this value to 1.

createdby The administrator entity that created this entry.
createdserial The serial number of the transaction during which this entry was created.

gid B I G I N T U N S I G N E D N O T N U L L A U T O_ I N C R E M E N T,
dn V A R C H A R(255) N O T N U L L,
parent B I G I N T U N S I G N E D N O T N U L L,
aclid B I G I N T U N S I G N E D N O T N U L L,
defaultaclid B I G I N T U N S I G N E D N O T N U L L,
must tinyint D E F A U L T N U L L,
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
P R I M A R Y K E Y (gid),
K E Y parentg (parent),

IST-2000-25182 INTERNAL 13/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

K E Y groupname (dn)
) T Y P E=InnoDB;

3.3.7. THE ROLES TABLE

TheROLES table contains the list of roles in the VO. The scriptedg-voms-admin-configure creates a
role for remote VO administration during database initialization:
INSERT INTO roles (rid, role, aclid, createdBy, createdSerial) VALUES

(1, ’VO-Admin’, 3, 1, 0);

(Here,$voname is replaced by the name of the VO.) This role is not a system group and is not handled
differently from any other role; the administrators are allowed to freely delete this role.

Column Description
rid The internal id of the role.

role The role name, qualified by the VO group.
aclid The id of the access control list that applies to the role.

createdby The administrator entity that created this entry.
createdserial The serial number of the transaction during which this entry was created.

rid B I G I N T U N S I G N E D N O T N U L L A U T O_ I N C R E M E N T,
role V A R C H A R(255) N O T N U L L,
aclid B I G I N T N O T N U L L,
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
P R I M A R Y K E Y (rid),
K E Y role (role)

) T Y P E=InnoDB;

3.3.8. THE CAPABILITIES TABLE

This table holds the list of capabilities that are known to the VO.

Note that the support for capabilities inedg-voms-admin is still experimental.

Column Description
cid The internal id of the capability.

capability The name of the capability.
aclid The id of the access control list that applies to the capability.

createdby The administrator entity that created this entry.
createdserial The serial number of the transaction during which this entry was created.

cid B I G I N T U N S I G N E D N O T N U L L A U T O_ I N C R E M E N T,
capability V A R C H A R(255) N O T N U L L,
aclid B I G I N T N O T N U L L,
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
P R I M A R Y K E Y (cid),
K E Y capability (capability)

) T Y P E=InnoDB;

3.3.9. THE M TABLE

The M table defines membership relations in the VO. Each VO user is a member of the VO group, and
may be a member of any number of other groups. A user may have any number of roles, each of which

IST-2000-25182 INTERNAL 14/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

is qualified with the group where the role applies. Possible combinations (X denotes that the given field
is present,- denotes that the field is NULL):

Group Role Cap. Description
- any any Invalid. (Not generated byedg-voms-admin.)
X - - The user is a member of the given group.
X X - The user is a member of the given group, and also

has the specified role in that group.
X - X The user is a member of the given group, and also

has the given capability in that group.
X X X Invalid. (Not generated byedg-voms-admin.)

Capabilities are only bound to the VO group. Note that the support for capabilities inedg-voms-admin is
still experimental.

Column Description
uid The id of a user.
gid The id of a group.
rid The id of a role. (Optional.)
cid The id of a capability. (Optional.)
vid The id of a validity. (Unused, always zero.)
pid The id of a periodicity. (Unused, always zero.)

createdby The administrator entity that created this entry.
createdserial The serial number of the transaction during which this entry was created.

uid B I G I N T U N S I G N E D N O T N U L L references usr(uid),
gid B I G I N T U N S I G N E D N O T N U L L references groups(gid),
rid B I G I N T U N S I G N E D references roles(rid),
cid B I G I N T U N S I G N E D references capabilities(cid),
vid B I G I N T U N S I G N E D references validity(vid),
pid B I G I N T U N S I G N E D references periodicity(pid),
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
U N I Q U E m (uid,gid,rid,cid),
K E Y uid (uid),
K E Y rid (rid),
K E Y cid (cid),
K E Y container (gid,rid,cid)

) T Y P E=InnoDB;

3.3.10. THE ACL TABLE

TheACL table contains the entries of the ACLs of the various containers in the VO. It is not an error for
an ACL to be empty. Such empty ACLs have no entries, and thus have not a single row in this table.

Column Description
aid The internal identifier of the ACL.

adminid The id of the administrator entity that is the subject of this ACL entry.
operation The id of the operation that this entry allows or denies.

allow A zero value means the operation is denied; a one means the operation is al-
lowed.

IST-2000-25182 INTERNAL 15/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

aid B I G I N T U N S I G N E D N O T N U L L,
adminid B I G I N T N O T N U L L,
operation S M A L L I N T N O T N U L L,
allow tinyint N O T N U L L, -- 0 means deny, 1 means allow
createdby B I G I N T U N S I G N E D N O T N U L L,
createdserial B I G I N T U N S I G N E D N O T N U L L,
I N D E X (aid), -- not primary key!
I N D E X (aid, adminid, operation)

) T Y P E=InnoDB;

3.3.11. THE REQUESTS TABLE

The REQUESTS table contains all the requests that are currently processed byedg-voms-admin. The
requests are stored in their serialized Java object form. To allow efficient access to requests, some
important request parameters are extracted to separate, indexed columns.

Note that the support for requests is still experimental, and the details are to change.

Column Description
reqid The id of the request.

complete True if the request is in a final state, and thus no more state changes are ex-
pected to occur.

state The name of the current state of the request.
client The id of the administrator entity that submitted this request.

lastchange The time when the request last processed an event.
request The complete request, in a serialized Java object form.

reqid B I G I N T N O T N U L L,
complete B O O L,
state V A R C H A R(32),
client B I G I N T ,
lastchange T I M E S T A M P,
request B L O B N O T N U L L,
P R I M A R Y K E Y(reqid),
I N D E X (reqid)

) T Y P E=InnoDB;

4. GLOSSARY

Attribute: a string which is returned by VOMS for a user. An attribute can be a variety of things (e.g. a
group, a role etc.), but they only differ in the behaviour, how they are assigned to the user.

Container: a set of users (see also: Group, Role, Capability). (It is like a directory in a filesystem.)

Group: a group is a container which is unconditionally assigned to its member users. A group may
contain other groups, roles and users.

Groups can be organised in a tree like structure: no cycles or shared subgroups are allowed. There
is one group at the top of this hierarchy, which represents the VO itself. It is called the VO group.

If a new group is created inside an existing one, then it will inherit its parent name:

parent: /CERN/Atlas
groupname: designers
FQGN: /CERN/Atlas/designers

IST-2000-25182 INTERNAL 16/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

The group’s unique name is thisfully qualified group name.

The ACL of newly created groups and roles is a copy of the default ACL of its parent.

A member of a group has to be a member of its parent group as well.

VO group: a group which represents the VO.

This is the root of the group tree, which implies that every user in the database must be also a
member of this group.

DB representation:The VO group has agid value of 1.

Role: a role is a container which is only returned as an attribute if a member user explitly asks for it.

Membership in a role is always associated with a group: a user may have role R in group A, but
not in group B.

Roles may have no sub-roles. Each role name must be unique.

Capability: a capability is a free-form string which can be assigned to any user. It is always returned in
the VOMS credential.

The names of the capabilities must be unique. Like in the case of roles, the namespace of the
capabilities is flat; there is no support for sub-capabilities.

User: a user is an entity who can be member of the various containers. A user must be registered in the
VO before it can be assigned to any container.

CA: a certificate authority is an entity which issues user credentials. A CA guarantees the uniqueness
of the user names only inside its own domain, thus we have to add this property to every user to be
able to uniquely identify them.

Each user must have a valid associated certificate authority, which grants its identity.

The CA table is a view on the/etc/grid-security/credentials (default place) directory, so
whenever a new certificate turns up there, it is added to the table. This update procedure runs
periodically during the operation of the service. Once a CA is added, it will stay in the CA table
indefinitely.

ACL: an access control list is a set of access control entries which is assigned to a group, role or capa-
bility. The entries of an ACL are in OR relation.

ACL entry: an ACL entry is a tuple which contains an operation, a principal and an allow/deny flag. A
principal can be any user, group or role in the database. An operation can be:

• create/delete – controls subgroup operations

• add/remove – controls membership operations

• setACL/getACL – controls ACL operations

• setDefault/getDefault – controls default membership operations

• ALL – special permission for all operations

(see the details at the operations)

The syntax used in this document is:(+/−) : 〈principal〉 : 〈operation〉
For example if Joe is allowed to add a new member to a group:+ : Joe: add

IST-2000-25182 INTERNAL 17/18

EDG-VOMS-ADMIN DEVELOPER’S GUIDE
Describing edg-voms-admin release 0.7

Doc. Identifier:
edg-voms-admin-dev-guide

Date: January 14, 2004

Authorization: a check made to determine if a previously authenticated remote client has the rights
necessary to execute a given operation.

The process first looks up the access control list that governs the requested operation (this likely
depends on the object of the operation). Then,edg-voms-admin gathers the available attributes of
the client:

• authentication information: id from the client’s certificate

• any attributes from the certificate’s VOMS extension

• if the client is a member of the local VO, thenedg-voms-admin automatically looks up her
attributes in the local database

After these preliminary steps,edg-voms-admin compares the ACL entries with the gathered at-
tributes. If there is a matching allow entry and there is no matching deny entry, then the authoriza-
tion is successful:

granted = no
for every user-attr in list-of-user-attributes

for every entry in access-control-list
if (entry.principal = user-attr and

entry.operation = operation) then
if entry.allow then

granted = yes
else

return no
end-if

end-if
end-for

end-for
return granted

IST-2000-25182 INTERNAL 18/18

	1. Basic Concepts
	1.1. Containers
	1.2. Fully Qualified Container Names

	2. Architectural overview
	2.1. Introduction
	2.2. High-Level Operations: Actions and Questions
	2.3. Low-Level Database Object Manipulations
	2.4. Transaction Management
	2.5. Request Handling

	3. Database Schema
	3.1. Overview
	3.2. Traceability features
	3.3. Individual Table Descriptions
	3.3.1. The sequences table
	3.3.2. The realtime table
	3.3.3. The admins table
	3.3.4. The ca table
	3.3.5. The usr table
	3.3.6. The groups table
	3.3.7. The roles table
	3.3.8. The capabilities table
	3.3.9. The m table
	3.3.10. The acl table
	3.3.11. The requests table

	4. Glossary

