Policy Discription Language Module

Requirements € design

G.M. Venekamp

venekamp@nikhef.nl

September 23, 2003

Abstract

When a user or service has been authenticated and is allowed into
the system, the system must provide the user or service with a suitable
environment. In order to decide which environment is correct, the user
or service needs to provide a set of credentials. Based upon these
credentials, the system assigns the allowed resources.

In order to accomplish the above, the system must know about
policies for assigning resources to a user or service. To be as flexible
as possible, a configuration file is used for describing policies. A small
and simple yet powerful language has been developed to describe the
policy rules of a site. This document describes the policy description
language design.

document version: 0.1

Document history:

| Date | Version | Author | Change

| 10 February 2003 | 0.1 | G.M. Venekamp | Initial document.

Contents

1 Introduction 1
2 Requirements 3
3 Existing solutions 5
3.1 Boolean expressions 5
3.1.1 Policies in a Generic AAA Environment 5

3.1.2 A Policy Description Language 5

3.2 PAM 6

4 Design 7
4.1 DFAexample 7
4.1.1 Policy example 8

4.2 Thelanguage L. 8
4.2.1 Policy example 9

4.2.2 More elaborate DFAs 10

4.3 Extending the language 10
4.3.1 Policy example 12

4.4

Final words 12

1 Introduction

1 Introduction

When a user or server wants to make use of a grid enabled computer,
it first needs permission to enter the grid enabled service. After it has
been determined that the user is allowed onto the system, it must be
decided what the user is allowed to do and what to use. The right
environment must be set up. In other words, the system must be able
to determine what resources are available to a particular user. The
system is aided by the fact that each user carries a set of credentials.
These credentials describe what a user is allowed to do. For exam-
ple, the credentials tell of which virtual organization (VO) a user is a
member. The user can selected anyone of these VOs to be used on his
account. With this information the system is able to tell how much
disk space may be used, how many processors are reserved for the VO,
billing, etc. The system must consult these credentials in order to
determine the environment.

Having credentials is not enough. A site might want to have control
of the way the environment is setup. Consider the following: A user Is dit wel
might be a member of a VO that has access to your site. At the same een goed
time this user has a local account on your site. When this user want voorbeeld?
to use some of the resources of the site, either it is done on the account
of the VO or as a local user of that system. A site has a choice now.
When a user with a local account wants to make use of the resources,
a site can decide that the user can use the resources under his/her own
account regardless of any VO he/she is a member of. Of course a site
might also decide that even though a user has a local account, he/she
needs to use the VO affiliation first.

For this reason, each site has a set of policies. These policies, to-
gether with the credentials, determine the environment of the user.
The policy rules are described in a configuration file. This configu-
ration file is composed of plain text to make it readable by humans
and editable by a wide range of editors. Another important fact is the
readability of the file. This should be is as intuitive as possible. If the
description of policies is too difficult, errors are easily made. Mistakes
can lead to assigning resources to a person which has no right to that
particular resource. It would be embarrassing to send the billing to
the wrong VO. Clearly, this must be prevented as much as possible.
By trying to keep the language a simple as possible, it is our believe
that these kinds of mistakes should be kept to a minimum.

Also, by not over complicating the structure of the configuration
file, graphical user interfaces can be easily created. Thus, further lim-
iting unwanted mistakes. This is, however, not the first goal at this
stage of development, but it might be desirable once the subsystem is
in use by less experienced users.

STRUCTURE OF THE DOCUMENT

The following section describes the requirements of the language. Re-
quirements help us understand what it is we really want. This is fol-
lowed by a discussion on existing solutions and their usability to the

‘ B
DataGrid/pdl 1 NI.'EF

doc version 0.1 = o~

1 Introduction

project. Since non of the existing solution fulfill our needs, we have to
come up with our own language. Section 4 shows the design of that

language.
DataGrid/pdl NI\/EF
doc version 0.1 2 !!

2 Requirements

2 Requirements

pdl_1: The configuration file must be in a human readable format.

Rationale: When the configuration file is in a human readable format, it can be
edited in any plain text editor by any human. This relinquishes the
needs for a GUI to edit configuration files and can be done quite easily
remotely.

pdl_2: The configuration file must support comments.

Rationale: The configuration file becomes more readable by adding comments.
This should lead to a better interpretation of the file and reduce the
number of errors made.

pdl_3: The configuration language must support for more than one policy
rule.

Rationale: By allowing several smaller policy rules, instead of one huge rule, the
readability of the configuration file is enhanced and thereby reducing
the number of errors.

pdl_4: A policy must be reusable inside another policy.

Rationale: By allowing policy rules to contain policy rules, one reduces the amount
of double policy rules. Thus limiting the number of errors. Should an
error be discovered and fixed, it is fixed for all policy rules. No fixes
are forgotten this way.

pdl_5: The language must support both a TRUE and FALSE path, when a part
of the policy rules fails.

Rationale: Policy modules return either TRUE or FALSE. When a module succeeds
or fails, two different paths can be taken to complete the policy. The
language must reflect this behaviour.

DataGrid,/pdl 5 N'iiEF
doc version 0.1 =

8 FExmisting solutions

3 Existing solutions

The language that is going to be used in the configuration files to
describe policy rules must be readable to a human and not too difficult
to grasp its meaning. To make it readable means to use the plain
text character set. It can be read by a large variety of editors across
all platforms. When remote administration is needed, the plain text
character set insures the best compatible solution.

3.1 Boolean expressions

One of the approaches that have been considered are boolean expres-
sions. All requirements are met. However, there is one drawback of
using boolean expressions; they get more complicated as the length of
the expression grows. For example, the boolean expression:

a1 N (g2 Vags)

is quite easy to interpret and understand. The story is all together
quite different for the following expression:

a1 A g2 A ((g3 A ga) V ((g5 V(g6 A g7)) A gs))

Therefore we have decided not to use boolean expressions as our
configuration language.

3.1.1 Policies in a Generic AAA Environment

In [2], a generic policy language is described. In essence, the language is
still a boolean expression. The basis of the language is that of the form:
‘if condition then action’, where the condition is a boolean expression
in k-DNF form. For our purpose, the action is of less interest to us.
For us, it is the modules (a tuple from the k-DNF expression) that
performs the action and at the same time provide the condition. To
conclude, we did not choose this solution because:

1. boolean expressions are the core of the language, making it harder
to read;

2. the ‘if condition then action’ does not map to our domain as
well as we would like.

3.1.2 A Policy Description Language

In [1], Lobo describes yet another approach to a Policy Description
Language. This is much the same as A. Taal does in: Policies in a
Generic AAA Environment. This approach is less expressive. There-
fore based on the same reasons as mentioned above (section 3.1.1), this
approach is not pursued any further.

‘ B
DataGrid/pdl 5 NI.'EF

doc version 0.1 = o~

8 FExmisting solutions 3.2 PAM

3.2 PAM

As stated in the previous section, using a human readable format is
not enough. The language itself must also be easy to interpret by a hu-
man. One such solution is PAM (Pluggable Authentication Modules).
Within PAM the success of a module is either: required, optional or
sufficient. The meaning of each conditional is the following:

required — this module must return success in order to have the
overall result be successful;

optional — if this module fails the overall result can still be success-
ful if another module in the stack returns success;

sufficient — if this module is successful, skip the remaining modules
in the stack, even if they are labeled as required.

This is in conflict with requirement pdl_5 on page 3. When it is
sufficient for a module to succeed, PAM exits and returns TRUE to
indicate that it has successfully exited. Omne cannot, based on the
success of the sufficient module, evaluate additional modules. Only
on the failure of the module, will PAM continue with the next listed
module on the stack.

‘ B
DataGrid/pdl 6 NI.'EF

doc version 0.1 = o~

4 Design

4 Design

Our solution is to envision the policy rules as a Deterministic Finite
Automata (DFA). DFAs are composed of states and transitions from
one state to another. Precisely one of the states of a DFA has to be a
starting state. This state is identified by an arrow, with a filled disk
attached to the beginning, pointing to the start state. There is always
exactly one start state per DFA. Also, a DFA has at least one end
state. These are drawn with an inner circle. Unlike start states, a DFA
can have more than one end state. Transitions are drawn as arrows
originating from, and pointing to, a state. Transitions only happen
when the conditions for the transition have been met. When no more
transitions can be made, the DFA is said to have been terminated. If
it terminates in an end point the DFA has succeeded, if not, it has
failed.

Normally, a transition can be anything. In our case however, we
know that there are only two possible transitions: TRUE or FALSE.
We can use this a priori knowledge in designing our language, i.e.
we do not have to specify the transition type; it is either TRUE or
FALSE. Also with regard to termination of the DFA, we do it slightly
different. When the DFA reaches an end state, the evaluation of that
state determines the success or failure of the DFA. This is in contrast
to reaching an end state and reporting success. One can view this
difference as a compression. This way one less state needs to be drawn.

klopt dit gra-
maticaal wel?

4.1 DFA example

The following figure illustrates a DFA in which three states {q1, q2, ¢35}
need to be visited. In each state a different module is evaluated and
the result is used for the transition. Since we are only interested in
successful evaluations, the transition only takes place when a module
returns TRUE. Given the following DFA: we can say that the policy rule

Figure 1: Simple DFA containing three states and only one TRUE transitions.

has succeeded when the module in state g3 returns TRUE. Should the
result be FALSE for the states {qi, g2} then the policy rule has failed.
When no transition can be made, the DFA terminates in that state
and the policy rule has failed.

Of course a FALSE transition is also possible. We do need to make
clear that a transaction needs to take place on the FALSE condition.
Therefore we introduce the letters T and F to denote TRUE and FALSE
respectively. The following figure shows a DFA containing a FALSE
transition. The way this DFA should be read is as follows: ¢; must
succeed and either ¢ or g3 must succeed.

‘ B
DataGrid/pdl . NI.'EF

doc version 0.1 = o~

4 Design 4.2 The language

F

Figure 2: Simple DFA containing three states, two TRUE and one FALSE
transitions.

In case the evaluation of ¢2 is TRUE, we do not need to evaluate g3,
because g2 is marked as an end state. The policy rule has succeeded
with the successful evaluation of g3. Only when ¢y returns FALSE, is
the transition from ¢o to g3 made and determines g3 the success or
failure of the policy rule.

4.1.1 Policy example

Figure 3 shows a real example of a policy. Sites which wish to give
precedence to localaccounts over poolaccounts might want a policy like
this. The policy checks if the user may use a localaccount first. If this is
allowed, the policy then checks for posix enforcement. When all is okay,
the policy has succeeded, otherwise it has not. However, it is possible
that the localaccount does not allow for a local account because, the
user has no local account at all. In this case the site policy tells that the
poolaccount needs to be checked. When the poolaccount is successful,
the voms will be checked. At last, the same posix enforcement need to
be done as before. Only when the posix enforcement is successful, will
the policy have succeeded.

local
account

pool
account

Figure 3: Real example.

In the above example the DFA starts at the localaccount. By letting
it start at the poolaccount state and inverting the direction of the
transition between localaccount and poolaccount, precedence is given
to poolaccount instead of localaccount. Thus, even when a user has a
local account, the system prefers pool account. This shows how system
administrators are able to decide what happens on their system.

4.2 The language

DFAs give us a reasonable clear language to express policy rules. How-
ever, this is in direct violation of requirement pdl_1. We need to
translate the DFA into plain text.

‘ B
DataGrid/pdl 3 NI.'EF

doc version 0.1 = o~

4 Design 4.2 The language

In order to describe the DFA, we only need to specify the transi-
tions from one state to another. We use the ‘—’ symbol to indicate
a transition. Thus q; — ¢» means the transition from state ¢; to ¢s.
From this notation it is not clear what the condition of the transition
is. Unless stated otherwise, the default condition of a transition is
TRUE. With these rules, the DFA of Figure 1 translates into:

Q1 — q2
q2 — g3

If the DFA contains a FALSE transition, then we need to tell that we
do not want to use the default TRUE transition. This is accomplished
by prefixing a tilde to a transition line. Thus, Figure 2 translates into:

g1 — Q2
~q2 — Q3

This kind of language is easily translated into plain text. The ‘—’
symbol can be written in plain text as: ‘=>’. For typographically reason
we will use the ‘—’ symbol throughout this document. The language
just describes can also be written down into Extended Backus Naur
Form (EBNF). We use the following definitions:

e ‘x’ denotes zero or more repetitions;

e ‘+’ denotes one or more repetitions;

e '’ denotes a choice;

e anything between quotes () is taken as literal;

e reserved words are printed in bold.

Using the above definitions, we can express our language as follows:

policy = rule+

rule = term — term

rule == term — term’|’ term
rule = ~term — term

term = [a-2zA-Z0-9_]x

The above reads: a policy contains at least one rule; a rule can be one
of three forms; a term is composed out of characters, digits, underscores
and punctuations.

4.2.1 Policy example

With the above definitions, the policy as described in § 4.1.1 is thus

written:
localaccount — posiz_enf | poolaccount

poolaccount — wvoms
voms — posiz_enf

As one can see, this is fairly simple to interpret and understand. It
also meets all requirements we have set ourselves.

We would like more flexibility in the language. Thus, the basic
idea will be extended. First, we will show some more complex artificial
examples to demonstrate the ease of the language.

‘ B
DataGrid/pdl 9 NI.'EF

doc version 0.1 = o~

4 Design 4.8 FExtending the language

4.2.2 More elaborate DFAs

We will give two more examples of a DFA. This is to show that rather
complicated policies can be written down in an understandable fashion.
Suppose we have the following DFA:

This would translate into:

qu — Q42
q2 — (3
3 — qu|gs
45 — (s

Even though the DFA has six states, the configuration file does not
look overwhelming. Which is what we are looking for.
As a last example we give the following DFA:

SO0
ORRO F
SOOI O)

Again, this is translated into the following policy rule:

Q. — Q2
q2 — Q3\Q5
43 — 44
~44s — (gs
q5 — (o
qg6 — q7

Still, the configuration file looks comprehensible despite the fact that
several TRUE/FALSE transitions are present.

4.3 Extending the language

What we have described thus far is a very basic language. It does all
that we need. Though, we would like to take it one step further. First
of all, we would like to be able to use free variables. This allows us to
use simpler naming in the policy rules. A free variable is defined as
follows:

)

var = '='term

However, spaces are not allowed in this form, since a term cannot
contain a space. If spaces are needed, the term needs to be a string:

var = =’ string

‘ B
DataGrid/pdl 10 NI.'EF

doc version 0.1 = o~

4 Design 4.8 FExtending the language

A string is defined as the following regular expression:

string = \"["\"\n]x[\"\n]

The string matches any sequence that starts with a double quote,
followed by any character that is not a newline and closed by a double
quote.

Sites might want to have more than one policy rule. Thus, we add
the following line to the definition:

config = warx policy’’+

This gives every policy rule a label, thereby grouping them and being

able to refer to each individual group. Now that policies are labeled
we would like to have the ability to use a policy rule inside a policy
rule. This means that a ‘term’ can also be a ‘policy’:

term = policy
All modules are stored at the same location. Therefore we have

reserved one name: path. This is a special variable. It needs to be
followed by the assignment character (=) and a Unix path.

var = path =’ pvar
The following regular expression defines paths:

poar = =" [\/\J["\/ \t\n]*

Last but not least, we would like comments as well. A comment is
defined in the following manner:

comment = '# {any_character} \n’

Given our original specification together with the above extensions,
the complete EBNF notation for the language is:

config = warx policy’’+
var = '=’term
var = =’ string
var = path =’ pvar
policy = rule+
rule = term — term
rule = term — term’|’ term
rule = ~term — term
term = [a—2A-Z0-9_]x
comment = "# {any_character} \n’
gataGmd/pdl 11 NliiEF
oc version 0.1 =

W N

© oo ~ o«

10
11
12
13
14
15
16
17
18

4 Design 4.4 Final words

4.3.1 Policy example

Given the definition of the language in the previous paragraph. We
can write a configuration file for the example in Figure 3 on page 8:

Configuration example in which local accounts are
preferred over pool accounts.

First we define the path where the modules can be found.
path = /opt/edg/lib/lcmaps/modules

Let us now define the variables.
local = "lcmaps_localaccount.mod -gridmapfile /etc/grid-security/grid-mapfile"

pool = "lcmaps_poolaccount.mod -gridmapfile /etc/grid-security/grid-mapfile"
voms = "lcmaps_voms.mod -vomsdir /etc/grid-security/certificates

-certdir /etc/grid-security/certificates"
posix = "lcmaps_posix.mod -maxuid 1 -maxpgid 1 -maxsgid 32"

We have one policy rule that is called default.

default:

local -> posix | pool # See of local and posix do the job.

pool -> voms # If not: pool, voms and posix

voms -—> posix # need to do it.
The first interesting line to look at is line 5, we see the use of the
reserved word path. Here the path is defined where the modules can
be found. Lines 8 — 12 define four variables. Each variable is a module
with its arguments. These variables are used in the policy rules as can
be seen on lines 16 — 18. Line 15 defines the name of the policy.
4.4 Final words
As one can see, policies in the graphical form of the DFA are quite easy
to comprehend. On the other hand, translating from the graphical from
to plain text is quite easy to do and not error prone. The resulting
configuration file is still easy to interpret and understand. Mistakes
completely eradicated. However, mistakes are less likely to be made
by drawing a DFA and then translating it. As a bonus, one can easily
create a GUI for creating and maintaining the policy rules.

gataGmd/pdl 19 NliiEF
oc version 0.1 =

References References

References

[1] Jorge Lobo, Randeep Bhatia, and Shamim A. Naqvi. A policy
description language. In AAAI/TAAI pages 291-298, 1999. http:
//citeseer.nj.nec.com/lobo99policy.html.

[2] A. Taal and et.al. Policies in a generic aaa environment. http://
www.aaaarch.org/doc08/taal-aaaarch-generic-pol-00.txt,
November 2000.

. B
DataGrid/pdl 13 NI.'EF

doc version 0.1 = o~

